Suppr超能文献

酶诱导的具有结构色的纳米颗粒-水凝胶复合材料的硬化

Enzyme Induced Stiffening of Nanoparticle-Hydrogel Composites with Structural Color.

作者信息

Ayyub Omar B, Kofinas Peter

机构信息

Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States.

出版信息

ACS Nano. 2015 Aug 25;9(8):8004-11. doi: 10.1021/acsnano.5b01514. Epub 2015 Jul 23.

Abstract

The passive monitoring of biological environments by soft materials has a variety of nanobiotechnology applications; however, invoking distinct transitions in geometric, mechanical or optical properties remains a prevalent design challenge. We demonstrate here that close-packed nanoparticle-hydrogel composites can progress through a substantial shift in such properties by the use of a chemical-to-physical cross-link transition mediated by the catalytic activity of different proteases. Catalytic cleavage of the original hydrogel network structure initiates the self-assembled formation of a secondary, physically cross-linked network, causing a 1200% increase in storage modulus. Furthermore, this unique mechanism can be fabricated as a 3D photonic crystal with broad (∼240 nm), visible responses to the targeted enzymes. Moreover, the material provided threshold responses, requiring a certain extent of proteolytic activity before the transition occurred. This allowed for the fabrication of Boolean logic gates (OR and AND), which responded to a specific assortment of proteases. Ultimately, this mechanism enables the design of stimuli-responsive hydrogels, which can proceed through a secondary network formation, after an energetic barrier has been breached. Protease responsive hydrogel nanocomposites, described here, could offer avenues in degradation-stiffening and collapsing materials for a variety of biomaterial applications.

摘要

通过软材料对生物环境进行被动监测具有多种纳米生物技术应用;然而,引发几何、机械或光学性质的明显转变仍然是一个普遍存在的设计挑战。我们在此证明,通过使用由不同蛋白酶的催化活性介导的化学交联到物理交联的转变,紧密堆积的纳米颗粒 - 水凝胶复合材料可以在这些性质上发生显著变化。原始水凝胶网络结构的催化裂解引发了二级物理交联网络的自组装形成,导致储能模量增加1200%。此外,这种独特的机制可以被制作为对靶向酶具有宽泛(约240纳米)可见响应的三维光子晶体。而且,该材料提供阈值响应,在转变发生之前需要一定程度的蛋白水解活性。这使得能够制造对特定种类蛋白酶有响应的布尔逻辑门(或门和与门)。最终,这种机制能够设计出刺激响应水凝胶,在突破能量障碍后可以通过二级网络形成过程。本文所述的蛋白酶响应水凝胶纳米复合材料可为各种生物材料应用中的降解 - 硬化和塌陷材料提供途径。

相似文献

1
Enzyme Induced Stiffening of Nanoparticle-Hydrogel Composites with Structural Color.
ACS Nano. 2015 Aug 25;9(8):8004-11. doi: 10.1021/acsnano.5b01514. Epub 2015 Jul 23.
2
Mechanically Stiff Nanocomposite Hydrogels at Ultralow Nanoparticle Content.
ACS Nano. 2016 Jan 26;10(1):246-56. doi: 10.1021/acsnano.5b03918. Epub 2015 Dec 31.
3
Structurally colored protease responsive nanoparticle hydrogels with degradation-directed assembly.
Nanoscale. 2019 Oct 3;11(38):17904-17912. doi: 10.1039/c9nr04624k.
5
Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites.
J Biomed Mater Res A. 2007 Jan;80(1):1-6. doi: 10.1002/jbm.a.30962.
6
Nanoparticle-Polymer Synergies in Nanocomposite Hydrogels: From Design to Application.
Macromol Rapid Commun. 2018 Nov;39(21):e1800337. doi: 10.1002/marc.201800337. Epub 2018 Aug 17.
8
Heterogeneity in nanocomposite hydrogels from poly(ethylene oxide) cross-linked with silicate nanoparticles.
Phys Chem Chem Phys. 2009 Apr 21;11(15):2760-6. doi: 10.1039/b820452g. Epub 2009 Feb 25.
9
Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.
ACS Nano. 2016 Jan 26;10(1):1317-24. doi: 10.1021/acsnano.5b06692. Epub 2016 Jan 7.
10
Fabrication of thermo- and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles.
Carbohydr Polym. 2019 Jul 1;215:289-295. doi: 10.1016/j.carbpol.2019.03.100. Epub 2019 Mar 29.

引用本文的文献

3
Nanogels as a Versatile Drug Delivery System for Brain Cancer.
Gels. 2021 May 26;7(2):63. doi: 10.3390/gels7020063.
4
Enzymatic Noncovalent Synthesis.
Chem Rev. 2020 Sep 23;120(18):9994-10078. doi: 10.1021/acs.chemrev.0c00306. Epub 2020 Aug 19.
6
Chemically Responsive Photonic Crystal Hydrogels for Selective and Visual Sensing of Thiol-Containing Biomolecules.
ACS Omega. 2019 Jul 11;4(7):12043-12048. doi: 10.1021/acsomega.9b01257. eCollection 2019 Jul 31.
7
Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation.
Acta Biomater. 2019 Jan 1;83:83-95. doi: 10.1016/j.actbio.2018.11.011. Epub 2018 Nov 8.
8
Folding driven self-assembly of a stimuli-responsive peptide-hyaluronan hybrid hydrogel.
Sci Rep. 2017 Aug 1;7(1):7013. doi: 10.1038/s41598-017-06457-9.
9
Photonic crystal materials and their application in biomedicine.
Drug Deliv. 2017 Nov;24(1):775-780. doi: 10.1080/10717544.2017.1321059.
10
Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications.
Nanomaterials (Basel). 2015 Dec 3;5(4):2054-2130. doi: 10.3390/nano5042054.

本文引用的文献

1
A Versatile Synthetic Extracellular Matrix Mimic via Thiol-Norbornene Photopolymerization.
Adv Mater. 2009 Dec 28;21(48):5005-5010. doi: 10.1002/adma.200901808. Epub 2009 Oct 7.
3
Photonic crystal kinase biosensor.
J Am Chem Soc. 2014 May 14;136(19):6896-9. doi: 10.1021/ja5031062. Epub 2014 May 5.
4
Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition.
Nat Mater. 2014 Jun;13(6):653-61. doi: 10.1038/nmat3922. Epub 2014 Mar 30.
5
Nanoparticle solutions as adhesives for gels and biological tissues.
Nature. 2014 Jan 16;505(7483):382-5. doi: 10.1038/nature12806. Epub 2013 Dec 11.
6
Color changing block copolymer films for chemical sensing of simple sugars.
Biosens Bioelectron. 2011 Oct 15;28(1):349-54. doi: 10.1016/j.bios.2011.07.043. Epub 2011 Jul 23.
7
The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels.
Biomaterials. 2011 May;32(14):3564-74. doi: 10.1016/j.biomaterials.2011.01.064. Epub 2011 Feb 21.
8
Emerging applications of stimuli-responsive polymer materials.
Nat Mater. 2010 Feb;9(2):101-13. doi: 10.1038/nmat2614. Epub 2010 Jan 22.
9
Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery.
Biomaterials. 2009 Oct;30(30):6048-54. doi: 10.1016/j.biomaterials.2009.07.043. Epub 2009 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验