Jepsen Lars H, Ley Morten B, Černý Radovan, Lee Young-Su, Cho Young Whan, Ravnsbæk Dorthe, Besenbacher Flemming, Skibsted Jørgen, Jensen Torben R
†Center for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.
‡Laboratory of Crystallography, DQMP, University of Geneva, 1211 Geneva, Switzerland.
Inorg Chem. 2015 Aug 3;54(15):7402-14. doi: 10.1021/acs.inorgchem.5b00951. Epub 2015 Jul 21.
Fourteen solvent- and halide-free ammine rare-earth metal borohydrides M(BH4)3·nNH3, M = Y, Gd, Dy, n = 7, 6, 5, 4, 2, and 1, have been synthesized by a new approach, and their structures as well as chemical and physical properties are characterized. Extensive series of coordination complexes with systematic variation in the number of ligands are presented, as prepared by combined mechanochemistry, solvent-based methods, solid-gas reactions, and thermal treatment. This new synthesis approach may have a significant impact within inorganic coordination chemistry. Halide-free metal borohydrides have been synthesized by solvent-based metathesis reactions of LiBH4 and MCl3 (3:1), followed by reactions of M(BH4)3 with an excess of NH3 gas, yielding M(BH4)3·7NH3 (M = Y, Gd, and Dy). Crystal structure models for M(BH4)3·nNH3 are derived from a combination of powder X-ray diffraction (PXD), (11)B magic-angle spinning NMR, and density functional theory (DFT) calculations. The structures vary from two-dimensional layers (n = 1), one-dimensional chains (n = 2), molecular compounds (n = 4 and 5), to contain complex ions (n = 6 and 7). NH3 coordinates to the metal in all compounds, while BH4(-) has a flexible coordination, i.e., either as a terminal or bridging ligand or as a counterion. M(BH4)3·7NH3 releases ammonia stepwise by thermal treatment producing M(BH4)3·nNH3 (6, 5, and 4), whereas hydrogen is released for n ≤ 4. Detailed analysis of the dihydrogen bonds reveals new insight about the hydrogen elimination mechanism, which contradicts current hypotheses. Overall, the present work provides new general knowledge toward rational materials design and preparation along with limitations of PXD and DFT for analysis of structures with a significant degree of dynamics in the structures.
通过一种新方法合成了14种无溶剂和无卤化物的氨基金属硼氢化物M(BH₄)₃·nNH₃,其中M = Y、Gd、Dy,n = 7、6、5、4、2和1,并对其结构以及化学和物理性质进行了表征。展示了通过机械化学、溶剂法、固气反应和热处理相结合制备的一系列具有系统配体数量变化的广泛配位络合物。这种新的合成方法可能会在无机配位化学领域产生重大影响。通过LiBH₄与MCl₃(3:1)的溶剂复分解反应,然后使M(BH₄)₃与过量的NH₃气体反应,合成了无卤化物的金属硼氢化物,得到M(BH₄)₃·7NH₃(M = Y、Gd和Dy)。M(BH₄)₃·nNH₃的晶体结构模型是通过粉末X射线衍射(PXD)、¹¹B魔角旋转核磁共振和密度泛函理论(DFT)计算相结合得出的。结构从二维层状(n = 1)、一维链状(n = 2)、分子化合物(n = 4和5)到含有络合离子(n = 6和7)各不相同。在所有化合物中,NH₃与金属配位,而BH₄⁻具有灵活的配位方式,即既可以作为端基配体或桥联配体,也可以作为抗衡离子。M(BH₄)₃·7NH₃通过热处理逐步释放氨,生成M(BH₄)₃·nNH₃(6、5和4),而当n≤4时释放氢气。对二氢键的详细分析揭示了关于氢消除机制的新见解,这与当前的假设相矛盾。总体而言,本工作为合理的材料设计和制备提供了新的一般知识,同时也指出了PXD和DFT在分析结构中具有显著动力学程度的结构时的局限性。