Suppr超能文献

使用空间光调制器的双光子激发荧光显微镜校正深度诱导的球差以进行深度观察。

Correction of depth-induced spherical aberration for deep observation using two-photon excitation fluorescence microscopy with spatial light modulator.

作者信息

Matsumoto Naoya, Inoue Takashi, Matsumoto Akiyuki, Okazaki Shigetoshi

机构信息

Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, Shizuoka-Pref., 434-8601, Japan.

Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-City, Aichi-Pref., 466-8550, Japan.

出版信息

Biomed Opt Express. 2015 Jun 17;6(7):2575-87. doi: 10.1364/BOE.6.002575. eCollection 2015 Jul 1.

Abstract

We demonstrate fluorescence imaging with high fluorescence intensity and depth resolution in which depth-induced spherical aberration (SA) caused by refractive-index mismatch between the medium and biological sample is corrected. To reduce the impact of SA, we incorporate a spatial light modulator into a two-photon excitation fluorescence microscope. Consequently, when fluorescent beads in epoxy resin were observed with this method of SA correction, the fluorescence signal of the observed images was ∼27 times higher and extension in the direction of the optical axes was ∼6.5 times shorter at a depth of ∼890 μm. Thus, the proposed method increases the depth observable at high resolution. Further, our results show that the method improved the fluorescence intensity of images of the fluorescent beads and the structure of a biological sample.

摘要

我们展示了具有高荧光强度和深度分辨率的荧光成像,其中由介质与生物样品之间的折射率失配引起的深度诱导球差(SA)得到了校正。为了减少SA的影响,我们将空间光调制器纳入双光子激发荧光显微镜中。因此,当用这种SA校正方法观察环氧树脂中的荧光珠时,在约890μm深度处,观察图像的荧光信号高出约27倍,光轴方向的延伸缩短了约6.5倍。因此,所提出的方法增加了高分辨率下可观察的深度。此外,我们的结果表明,该方法提高了荧光珠图像和生物样品结构的荧光强度。

相似文献

2
Correction of spherical aberration in multi-focal multiphoton microscopy with spatial light modulator.
Opt Express. 2017 Mar 20;25(6):7055-7068. doi: 10.1364/OE.25.007055.
4
Complex-Amplitude-Modulation Vectorial Excitation Beam for High-Resolution Observation of Deep Regions in Two-Photon Microscopy.
Front Neurosci. 2022 Apr 19;16:880178. doi: 10.3389/fnins.2022.880178. eCollection 2022.
9
The effects of spherical aberration on multiphoton fluorescence excitation microscopy.
J Microsc. 2011 May;242(2):157-65. doi: 10.1111/j.1365-2818.2010.03449.x. Epub 2010 Oct 11.
10
A spherical aberration-free microscopy system for live brain imaging.
Biochem Biophys Res Commun. 2018 Jun 2;500(2):236-241. doi: 10.1016/j.bbrc.2018.04.049. Epub 2018 Apr 18.

引用本文的文献

1
Model-based aberration corrected microscopy inside a glass tube.
J Microsc. 2025 Jun;298(3):316-323. doi: 10.1111/jmi.13402. Epub 2025 Mar 16.
2
Complex-Amplitude-Modulation Vectorial Excitation Beam for High-Resolution Observation of Deep Regions in Two-Photon Microscopy.
Front Neurosci. 2022 Apr 19;16:880178. doi: 10.3389/fnins.2022.880178. eCollection 2022.
3
Non-telecentric two-photon microscopy for 3D random access mesoscale imaging.
Nat Commun. 2022 Jan 27;13(1):544. doi: 10.1038/s41467-022-28192-0.
4
Advances in nonlinear optical microscopy techniques for in vivo and in vitro neuroimaging.
Biophys Rev. 2021 Aug 31;13(6):1199-1217. doi: 10.1007/s12551-021-00832-7. eCollection 2021 Dec.
6
Advances in adaptive optics-based two-photon fluorescence microscopy for brain imaging.
Lasers Med Sci. 2020 Mar;35(2):317-328. doi: 10.1007/s10103-019-02908-z. Epub 2019 Nov 15.
8
Aberration correction method based on double-helix point spread function.
J Biomed Opt. 2018 Sep;24(3):1-11. doi: 10.1117/1.JBO.24.3.031005.
10
Adaptive optical versus spherical aberration corrections for brain imaging.
Biomed Opt Express. 2017 Jul 31;8(8):3891-3902. doi: 10.1364/BOE.8.003891. eCollection 2017 Aug 1.

本文引用的文献

1
Stable and flexible multiple spot pattern generation using LCOS spatial light modulator.
Opt Express. 2014 Oct 6;22(20):24722-33. doi: 10.1364/OE.22.024722.
2
Multiplexed aberration measurement for deep tissue imaging in vivo.
Nat Methods. 2014 Oct;11(10):1037-40. doi: 10.1038/nmeth.3068. Epub 2014 Aug 17.
3
Exploring the depth range for three-dimensional laser machining with aberration correction.
Opt Express. 2014 Jul 28;22(15):17644-56. doi: 10.1364/OE.22.017644.
4
Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis.
Cell. 2014 Apr 24;157(3):726-39. doi: 10.1016/j.cell.2014.03.042. Epub 2014 Apr 17.
5
SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction.
Nat Neurosci. 2013 Aug;16(8):1154-61. doi: 10.1038/nn.3447. Epub 2013 Jun 23.
6
ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue.
Development. 2013 Mar;140(6):1364-8. doi: 10.1242/dev.091844.
8
Three-dimensional imaging of solvent-cleared organs using 3DISCO.
Nat Protoc. 2012 Nov;7(11):1983-95. doi: 10.1038/nprot.2012.119. Epub 2012 Oct 11.
9
Adaptive optics enables 3D STED microscopy in aberrating specimens.
Opt Express. 2012 Sep 10;20(19):20998-1009. doi: 10.1364/OE.20.020998.
10
3D resolved mapping of optical aberrations in thick tissues.
Biomed Opt Express. 2012 Aug 1;3(8):1898-913. doi: 10.1364/BOE.3.001898. Epub 2012 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验