Suppr超能文献

最新技术:迭代 CT 重建技术。

State of the Art: Iterative CT Reconstruction Techniques.

机构信息

From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.).

出版信息

Radiology. 2015 Aug;276(2):339-57. doi: 10.1148/radiol.2015132766.

Abstract

Owing to recent advances in computing power, iterative reconstruction (IR) algorithms have become a clinically viable option in computed tomographic (CT) imaging. Substantial evidence is accumulating about the advantages of IR algorithms over established analytical methods, such as filtered back projection. IR improves image quality through cyclic image processing. Although all available solutions share the common mechanism of artifact reduction and/or potential for radiation dose savings, chiefly due to image noise suppression, the magnitude of these effects depends on the specific IR algorithm. In the first section of this contribution, the technical bases of IR are briefly reviewed and the currently available algorithms released by the major CT manufacturers are described. In the second part, the current status of their clinical implementation is surveyed. Regardless of the applied IR algorithm, the available evidence attests to the substantial potential of IR algorithms for overcoming traditional limitations in CT imaging.

摘要

由于计算能力的最新进展,迭代重建(IR)算法已成为计算机断层扫描(CT)成像中一种可行的临床选择。越来越多的证据表明,IR 算法相对于滤波反投影等既定分析方法具有优势。IR 通过循环图像处理来提高图像质量。尽管所有可用的解决方案都具有减少伪影和/或潜在的辐射剂量节省的共同机制,主要是由于图像噪声抑制,但这些效果的大小取决于特定的 IR 算法。在本贡献的第一部分中,简要回顾了 IR 的技术基础,并描述了主要 CT 制造商发布的当前可用算法。在第二部分中,调查了它们的临床实施现状。无论应用何种 IR 算法,现有的证据都证明了 IR 算法在克服 CT 成像中的传统限制方面具有巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验