Dolz Jose, Laprie Anne, Ken Soléakhéna, Leroy Henri-Arthur, Reyns Nicolas, Massoptier Laurent, Vermandel Maximilien
AQUILAB, Biocentre A. Fleming, 250 rue Salvador Allende, 59120, Loos les Lille, France.
Univ. Lille, Inserm, CHU Lille, U1189, ONCO-THAI - Image Assisted Laser Therapy for Oncology, 59000, Lille, France.
Int J Comput Assist Radiol Surg. 2016 Jan;11(1):43-51. doi: 10.1007/s11548-015-1266-2. Epub 2015 Jul 24.
To constrain the risk of severe toxicity in radiotherapy and radiosurgery, precise volume delineation of organs at risk is required. This task is still manually performed, which is time-consuming and prone to observer variability. To address these issues, and as alternative to atlas-based segmentation methods, machine learning techniques, such as support vector machines (SVM), have been recently presented to segment subcortical structures on magnetic resonance images (MRI).
SVM is proposed to segment the brainstem on MRI in multicenter brain cancer context. A dataset composed by 14 adult brain MRI scans is used to evaluate its performance. In addition to spatial and probabilistic information, five different image intensity values (IIVs) configurations are evaluated as features to train the SVM classifier. Segmentation accuracy is evaluated by computing the Dice similarity coefficient (DSC), absolute volumes difference (AVD) and percentage volume difference between automatic and manual contours.
Mean DSC for all proposed IIVs configurations ranged from 0.89 to 0.90. Mean AVD values were below 1.5 cm(3), where the value for best performing IIVs configuration was 0.85 cm(3), representing an absolute mean difference of 3.99% with respect to the manual segmented volumes.
Results suggest consistent volume estimation and high spatial similarity with respect to expert delineations. The proposed approach outperformed presented methods to segment the brainstem, not only in volume similarity metrics, but also in segmentation time. Preliminary results showed that the approach might be promising for adoption in clinical use.
为了限制放射治疗和放射外科中严重毒性的风险,需要对危及器官进行精确的体积描绘。这项任务仍需手动完成,既耗时又容易出现观察者差异。为了解决这些问题,作为基于图谱分割方法的替代方法,机器学习技术,如支持向量机(SVM),最近已被用于在磁共振图像(MRI)上分割皮层下结构。
提出使用支持向量机在多中心脑癌背景下对MRI上的脑干进行分割。使用由14例成人大脑MRI扫描组成的数据集来评估其性能。除了空间和概率信息外,还评估了五种不同的图像强度值(IIV)配置作为训练支持向量机分类器的特征。通过计算自动轮廓和手动轮廓之间的骰子相似系数(DSC)、绝对体积差(AVD)和体积百分比差来评估分割精度。
所有提出的IIV配置的平均DSC范围为0.89至0.90。平均AVD值低于1.5 cm³,其中表现最佳的IIV配置的值为0.85 cm³,相对于手动分割体积的绝对平均差异为3.99%。
结果表明,与专家描绘相比,该方法在体积估计上具有一致性且空间相似度高。所提出的方法在分割脑干方面优于现有方法,不仅在体积相似性指标上,而且在分割时间上。初步结果表明,该方法在临床应用中可能具有前景。