Suppr超能文献

基于改进多变量多尺度熵的癫痫脑电图信号自动分类

[Automatic Classification of Epileptic Electroencephalogram Signal Based on Improved Multivariate Multiscale Entropy].

作者信息

Xu Yonghong, Cui Jie, Hong Wenxue, Liang Huijuan

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2015 Apr;32(2):256-62.

Abstract

Traditional sample entropy fails to quantify inherent long-range dependencies among real data. Multiscale sample entropy (MSE) can detect intrinsic correlations in data, but it is usually used in univariate data. To generalize this method for multichannel data, we introduced multivariate multiscale entropy into multiscale signals as a reflection of the nonlinear dynamic correlation. But traditional multivariate multiscale entropy has a large quantity of computation and costs a large period of time and space for more channel system, so that it can not reflect the correlation between variables timely and accurately. In this paper, therefore, an improved multivariate multiscale entropy embeds on all variables at the same time, instead of embedding on a single variable as in the traditional methods, to solve the memory overflow while the number of channels rise, and it is more suitable for the actual multivariate signal analysis. The method was tested in simulation data and Bonn epilepsy dataset. The simulation results showed that the proposed method had a good performance to distinguish correlation data. Bonn epilepsy dataset experiment also showed that the method had a better classification accuracy among the five data set, especially with an accuracy of 100% for data collection of Z and S.

摘要

传统的样本熵无法量化实际数据中固有的长程依赖性。多尺度样本熵(MSE)能够检测数据中的内在相关性,但它通常用于单变量数据。为了将该方法推广到多通道数据,我们将多变量多尺度熵引入多尺度信号中,以反映非线性动态相关性。然而,传统的多变量多尺度熵计算量巨大,对于通道数更多的系统会消耗大量的时间和空间,以至于无法及时、准确地反映变量之间的相关性。因此,在本文中,一种改进的多变量多尺度熵同时对所有变量进行嵌入,而不是像传统方法那样对单个变量进行嵌入,以解决通道数增加时的内存溢出问题,并且它更适合实际的多变量信号分析。该方法在模拟数据和波恩癫痫数据集上进行了测试。模拟结果表明,所提出的方法在区分相关数据方面具有良好的性能。波恩癫痫数据集实验还表明,该方法在五个数据集中具有更好的分类准确率(尤其是对于Z和S数据采集,准确率达到100%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验