Suppr超能文献

成骨细胞分化的延时拉曼成像

Time-lapse Raman imaging of osteoblast differentiation.

作者信息

Hashimoto Aya, Yamaguchi Yoshinori, Chiu Liang-da, Morimoto Chiaki, Fujita Katsumasa, Takedachi Masahide, Kawata Satoshi, Murakami Shinya, Tamiya Eiichi

机构信息

Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Institute of Photonics and Biomedicine, Graduate School of Science, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China.

出版信息

Sci Rep. 2015 Jul 27;5:12529. doi: 10.1038/srep12529.

Abstract

Osteoblastic mineralization occurs during the early stages of bone formation. During this mineralization, hydroxyapatite (HA), a major component of bone, is synthesized, generating hard tissue. Many of the mechanisms driving biomineralization remain unclear because the traditional biochemical assays used to investigate them are destructive techniques incompatible with viable cells. To determine the temporal changes in mineralization-related biomolecules at mineralization spots, we performed time-lapse Raman imaging of mouse osteoblasts at a subcellular resolution throughout the mineralization process. Raman imaging enabled us to analyze the dynamics of the related biomolecules at mineralization spots throughout the entire process of mineralization. Here, we stimulated KUSA-A1 cells to differentiate into osteoblasts and conducted time-lapse Raman imaging on them every 4 hours for 24 hours, beginning 5 days after the stimulation. The HA and cytochrome c Raman bands were used as markers for osteoblastic mineralization and apoptosis. From the Raman images successfully acquired throughout the mineralization process, we found that β-carotene acts as a biomarker that indicates the initiation of osteoblastic mineralization. A fluctuation of cytochrome c concentration, which indicates cell apoptosis, was also observed during mineralization. We expect time-lapse Raman imaging to help us to further elucidate osteoblastic mineralization mechanisms that have previously been unobservable.

摘要

成骨细胞矿化发生在骨形成的早期阶段。在这个矿化过程中,骨的主要成分羟基磷灰石(HA)被合成,从而生成硬组织。由于用于研究生物矿化的传统生化分析方法是与活细胞不相容的破坏性技术,许多驱动生物矿化的机制仍不清楚。为了确定矿化部位矿化相关生物分子的时间变化,我们在整个矿化过程中以亚细胞分辨率对小鼠成骨细胞进行了延时拉曼成像。拉曼成像使我们能够在整个矿化过程中分析矿化部位相关生物分子的动态变化。在这里,我们刺激KUSA - A1细胞分化为成骨细胞,并在刺激后5天开始,每4小时对其进行24小时的延时拉曼成像。HA和细胞色素c的拉曼谱带被用作成骨细胞矿化和凋亡的标志物。从在整个矿化过程中成功获取的拉曼图像中,我们发现β - 胡萝卜素作为一种生物标志物,指示成骨细胞矿化的开始。在矿化过程中还观察到了指示细胞凋亡的细胞色素c浓度的波动。我们期望延时拉曼成像能够帮助我们进一步阐明以前无法观察到的成骨细胞矿化机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8da2/4515588/5951775e5eab/srep12529-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验