Suppr超能文献

用于高维预测的空间加权主成分回归

Spatially Weighted Principal Component Regression for High-Dimensional Prediction.

作者信息

Shen Dan, Zhu Hongtu

出版信息

Inf Process Med Imaging. 2015;24:758-69. doi: 10.1007/978-3-319-19992-4_60.

Abstract

We consider the problem of using high dimensional data residing on graphs to predict a low-dimensional outcome variable, such as disease status. Examples of data include time series and genetic data measured on linear graphs and imaging data measured on triangulated graphs (or lattices), among many others. Many of these data have two key features including spatial smoothness and intrinsically low dimensional structure. We propose a simple solution based on a general statistical framework, called spatially weighted principal component regression (SWPCR). In SWPCR, we introduce two sets of weights including importance score weights for the selection of individual features at each node and spatial weights for the incorporation of the neighboring pattern on the graph. We integrate the importance score weights with the spatial weights in order to recover the low dimensional structure of high dimensional data. We demonstrate the utility of our methods through extensive simulations and a real data analysis based on Alzheimer's disease neuroimaging initiative data.

摘要

我们考虑利用图上的高维数据来预测低维结果变量(如疾病状态)的问题。数据示例包括在线性图上测量的时间序列和基因数据,以及在三角剖分图(或晶格)上测量的成像数据等众多数据。这些数据中的许多都具有两个关键特征,即空间平滑性和内在的低维结构。我们基于一个称为空间加权主成分回归(SWPCR)的通用统计框架提出了一种简单的解决方案。在SWPCR中,我们引入了两组权重,包括用于在每个节点选择单个特征的重要性得分权重和用于纳入图上邻域模式的空间权重。我们将重要性得分权重与空间权重相结合,以恢复高维数据的低维结构。我们通过广泛的模拟以及基于阿尔茨海默病神经影像倡议数据的真实数据分析来证明我们方法的实用性。

相似文献

1
Spatially Weighted Principal Component Regression for High-Dimensional Prediction.
Inf Process Med Imaging. 2015;24:758-69. doi: 10.1007/978-3-319-19992-4_60.
2
Dynamic positron emission tomography data-driven analysis using sparse Bayesian learning.
IEEE Trans Med Imaging. 2008 Sep;27(9):1356-69. doi: 10.1109/TMI.2008.922185.
3
Genetic algorithms for finite mixture model based voxel classification in neuroimaging.
IEEE Trans Med Imaging. 2007 May;26(5):696-711. doi: 10.1109/TMI.2007.895453.
5
MWPCR: Multiscale Weighted Principal Component Regression for High-dimensional Prediction.
J Am Stat Assoc. 2017;112(519):1009-1021. doi: 10.1080/01621459.2016.1261710. Epub 2016 Dec 16.
6
A 3-D spatio-temporal deconvolution approach for MR perfusion in the brain.
Med Image Anal. 2014 Jan;18(1):144-60. doi: 10.1016/j.media.2013.10.004. Epub 2013 Oct 16.
7
Kernel regression based feature extraction for 3D MR image denoising.
Med Image Anal. 2011 Aug;15(4):498-513. doi: 10.1016/j.media.2011.02.006. Epub 2011 Feb 26.
8
Matched signal detection on graphs: theory and application to brain network classification.
Inf Process Med Imaging. 2013;23:1-12. doi: 10.1007/978-3-642-38868-2_1.
9
Regions-based illustrative visualization of multimodal datasets.
Comput Med Imaging Graph. 2013 Jun;37(4):263-71. doi: 10.1016/j.compmedimag.2013.04.002. Epub 2013 May 6.
10
A Structural Parametrization of the Brain Using Hidden Markov Models-Based Paths in Alzheimer's Disease.
Int J Neural Syst. 2016 Nov;26(7):1650024. doi: 10.1142/S0129065716500246. Epub 2016 Mar 29.

引用本文的文献

1
The changes of immunoglobulin G N-glycosylation in blood lipids and dyslipidaemia.
J Transl Med. 2018 Aug 29;16(1):235. doi: 10.1186/s12967-018-1616-2.
2
MWPCR: Multiscale Weighted Principal Component Regression for High-dimensional Prediction.
J Am Stat Assoc. 2017;112(519):1009-1021. doi: 10.1080/01621459.2016.1261710. Epub 2016 Dec 16.
3
Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials.
Alzheimers Dement. 2017 Apr;13(4):e1-e85. doi: 10.1016/j.jalz.2016.11.007. Epub 2017 Mar 22.

本文引用的文献

1
A ROAD to Classification in High Dimensional Space.
J R Stat Soc Series B Stat Methodol. 2012 Sep;74(4):745-771. doi: 10.1111/j.1467-9868.2012.01029.x. Epub 2012 Apr 12.
2
Multiscale Adaptive Regression Models for Neuroimaging Data.
J R Stat Soc Series B Stat Methodol. 2011 Sep;73(4):559-578. doi: 10.1111/j.1467-9868.2010.00767.x.
3
Biclustering via sparse singular value decomposition.
Biometrics. 2010 Dec;66(4):1087-95. doi: 10.1111/j.1541-0420.2010.01392.x.
4
Sparse partial least squares regression for simultaneous dimension reduction and variable selection.
J R Stat Soc Series B Stat Methodol. 2010 Jan;72(1):3-25. doi: 10.1111/j.1467-9868.2009.00723.x.
5
Modalities, modes, and models in functional neuroimaging.
Science. 2009 Oct 16;326(5951):399-403. doi: 10.1126/science.1174521.
6
Discussion of "Sure Independence Screening for Ultra-High Dimensional Feature Space.
J R Stat Soc Series B Stat Methodol. 2008 Nov;70(5):903. doi: 10.1111/j.1467-9868.2008.00674.x.
7
MRI denoising using non-local means.
Med Image Anal. 2008 Aug;12(4):514-523. doi: 10.1016/j.media.2008.02.004. Epub 2008 Feb 29.
8
Graph embedding and extensions: a general framework for dimensionality reduction.
IEEE Trans Pattern Anal Mach Intell. 2007 Jan;29(1):40-51. doi: 10.1109/TPAMI.2007.12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验