Detorakis Georgios Is, Chaillet Antoine, Palfi Stéphane, Senova Suhan
Laboratoire des Signaux et Systèmes, CentraleSupelec Gif-sur-Yvette, France ; Faculté des Sciences, Université Paris Sud Orsay, France.
AP-HP, Hospital H. Mondor, Service de neurochirurgie Créteil, France ; Institut National de la Santé et de la Recherche Médicale, U955, Equipe 14 Créteil, France ; Faculty of Medicine, Université Paris Est Créteil, France.
Front Neurosci. 2015 Jul 10;9:237. doi: 10.3389/fnins.2015.00237. eCollection 2015.
Several disorders are related to pathological brain oscillations. In the case of Parkinson's disease, sustained low-frequency oscillations (especially in the β-band, 13-30 Hz) correlate with motor symptoms. It is still under debate whether these oscillations are the cause of parkinsonian motor symptoms. The development of techniques enabling selective disruption of these β-oscillations could contribute to the understanding of the underlying mechanisms, and could be exploited for treatments. A particularly appealing technique is Deep Brain Stimulation (DBS). With clinical electrical DBS, electrical currents are delivered at high frequency to a region made of potentially heterogeneous neurons (the subthalamic nucleus (STN) in the case of Parkinson's disease). Even more appealing is DBS with optogenetics, which is until now a preclinical method using both gene transfer and deep brain light delivery and enabling neuromodulation at the scale of one given neural network. In this work, we rely on delayed neural fields models of STN and the external Globus Pallidus (GPe) to develop, theoretically validate and test in silico a closed-loop stimulation strategy to disrupt these sustained oscillations with optogenetics. First, we rely on tools from control theory to provide theoretical conditions under which sustained oscillations can be attenuated by a closed-loop stimulation proportional to the measured activity of STN. Second, based on this theoretical framework, we show numerically that the proposed closed-loop stimulation efficiently attenuates sustained oscillations, even in the case when the photosensitization effectively affects only 50% of STN neurons. We also show through simulations that oscillations disruption can be achieved when the same light source is used for the whole STN population. We finally test the robustness of the proposed strategy to possible acquisition and processing delays, as well as parameters uncertainty.
几种疾病与病理性脑振荡有关。就帕金森病而言,持续的低频振荡(尤其是在β波段,13 - 30赫兹)与运动症状相关。这些振荡是否是帕金森运动症状的病因仍在争论中。能够选择性破坏这些β振荡的技术发展可能有助于理解其潜在机制,并可用于治疗。一种特别有吸引力的技术是深部脑刺激(DBS)。在临床电DBS中,高频电流被输送到一个由潜在异质性神经元组成的区域(帕金森病的情况下是丘脑底核(STN))。更具吸引力的是光遗传学DBS,到目前为止它是一种临床前方法,使用基因转移和深部脑光传递,能够在一个给定神经网络的尺度上进行神经调节。在这项工作中,我们依靠STN和外侧苍白球(GPe)的延迟神经场模型,在计算机上开发、理论验证和测试一种闭环刺激策略,以用光遗传学破坏这些持续振荡。首先,我们依靠控制理论工具来提供理论条件,在这些条件下,与STN测量活动成比例的闭环刺激可以减弱持续振荡。其次,基于这个理论框架,我们通过数值模拟表明,即使在光敏化仅有效影响50%的STN神经元的情况下,所提出的闭环刺激也能有效减弱持续振荡。我们还通过模拟表明,当对整个STN群体使用相同光源时,可以实现振荡破坏。我们最后测试了所提出策略对可能的采集和处理延迟以及参数不确定性的鲁棒性。