Suppr超能文献

肌肉活动的任务判别时空分解

Task-discriminative space-by-time factorization of muscle activity.

作者信息

Delis Ioannis, Panzeri Stefano, Pozzo Thierry, Berret Bastien

机构信息

Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK.

Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia Rovereto, Italy.

出版信息

Front Hum Neurosci. 2015 Jul 10;9:399. doi: 10.3389/fnhum.2015.00399. eCollection 2015.

Abstract

Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Non-negative Matrix Factorization (NMF), identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e., task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules) to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment.

摘要

运动产生被假定依赖于肌肉活动的模块化组织。这一假设的关键在于,通过招募有限的一组模块并以任务依赖的方式将它们组合起来,能够可靠地执行各种运动任务。到目前为止,现有的提取肌肉激活假定模块的算法,如非负矩阵分解(NMF),识别出能使记录的肌电图数据重建最大化的模块化分解。通常,这些分解的功能作用,即任务完成情况,只是事后评估。然而,由于运动动作是在任务空间中定义的,我们建议运动模块也应在任务空间中计算。在本研究中,我们提出了一种新的模块提取算法,名为DsNM3F,它在模块识别过程中使用任务信息。DsNM3F扩展了我们之前的时空分解方法(所谓的sNM3F算法,该算法只能在计算模块后评估任务性能),以识别在两个互补目标之间衡量的模块:原始数据的重建和所执行任务的可靠区分。我们表明,DsNM3F比sNM3F更准确地恢复了模块激活的任务依赖性。我们还将其应用于在各种手臂指向任务执行过程中记录的肌电信号,并识别出与先前研究高度一致的肌肉活动的空间和时间模块。当有任务信息时,DsNM3F能实现完美的任务分类,且数据近似度没有显著损失,并且在应用于新数据时与sNM3F具有同样的泛化能力。这些发现表明,肌肉活动的时空分解找到了肌肉活动的强大任务区分模块化表示,并且插入任务区分目标对于描述模块招募的任务调制是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82bb/4498381/ff9fcfb46f45/fnhum-09-00399-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验