Suppr超能文献

激光散斑对比图像的改进多尺度样本熵计算及与原始多尺度熵算法的比较

Modified multiscale sample entropy computation of laser speckle contrast images and comparison with the original multiscale entropy algorithm.

作者信息

Humeau-Heurtier Anne, Mahé Guillaume, Abraham Pierre

机构信息

University of Angers, LARIS-Laboratoire Angevin de Recherche en Ingénierie des Systèmes, 62 avenue Notre-Dame du Lac, 49000 Angers, France.

Pôle imagerie médicale et explorations fonctionnelles, Hospital Pontchaillou of Rennes, University of Rennes 1, 35033 Rennes Cedex 9, FrancecInserm CIC 1414, 35033 Rennes cedex 9, France.

出版信息

J Biomed Opt. 2015 Dec;20(12):121302. doi: 10.1117/1.JBO.20.12.121302.

Abstract

Laser speckle contrast imaging (LSCI) enables a noninvasive monitoring of microvascular perfusion. Some studies have proposed to extract information from LSCI data through their multiscale entropy (MSE). However, for reaching a large range of scales, the original MSE algorithm may require long recordings for reliability. Recently, a novel approach to compute MSE with shorter data sets has been proposed: the short-time MSE (sMSE). Our goal is to apply, for the first time, the sMSE algorithm in LSCI data and to compare results with those given by the original MSE. Moreover, we apply the original MSE algorithm on data of different lengths and compare results with those given by longer recordings. For this purpose, synthetic signals and 192 LSCI regions of interest (ROIs) of different sizes are processed. Our results show that the sMSE algorithm is valid to compute the MSE of LSCI data. Moreover, with time series shorter than those initially proposed, the sMSE and original MSE algorithms give results with no statistical difference from those of the original MSE algorithm with longer data sets. The minimal acceptable length depends on the ROI size. Comparisons of MSE from healthy and pathological subjects can be performed with shorter data sets than those proposed until now.

摘要

激光散斑对比成像(LSCI)能够对微血管灌注进行无创监测。一些研究建议通过多尺度熵(MSE)从LSCI数据中提取信息。然而,为了覆盖较大范围的尺度,原始的MSE算法可能需要长时间记录才能保证可靠性。最近,一种利用更短数据集计算MSE的新方法被提出:短时MSE(sMSE)。我们的目标是首次将sMSE算法应用于LSCI数据,并将结果与原始MSE给出的结果进行比较。此外,我们将原始MSE算法应用于不同长度的数据,并将结果与更长记录的数据给出的结果进行比较。为此,我们处理了合成信号和192个不同大小的LSCI感兴趣区域(ROI)。我们的结果表明,sMSE算法对于计算LSCI数据的MSE是有效的。此外,对于比最初提出的时间序列更短的情况,sMSE和原始MSE算法给出的结果与使用更长数据集的原始MSE算法的结果在统计学上没有差异。最小可接受长度取决于ROI的大小。与健康和病理受试者的MSE比较可以使用比目前提出的更短的数据集进行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验