Rücker Gerta, Schwarzer Guido
Institute for Medical Biometry and Statistics, Medical Center - University of Freiburg, Stefan-Meier-Strasse 26, Freiburg, 79104, Germany.
BMC Med Res Methodol. 2015 Jul 31;15:58. doi: 10.1186/s12874-015-0060-8.
Network meta-analysis is used to compare three or more treatments for the same condition. Within a Bayesian framework, for each treatment the probability of being best, or, more general, the probability that it has a certain rank can be derived from the posterior distributions of all treatments. The treatments can then be ranked by the surface under the cumulative ranking curve (SUCRA). For comparing treatments in a network meta-analysis, we propose a frequentist analogue to SUCRA which we call P-score that works without resampling.
P-scores are based solely on the point estimates and standard errors of the frequentist network meta-analysis estimates under normality assumption and can easily be calculated as means of one-sided p-values. They measure the mean extent of certainty that a treatment is better than the competing treatments.
Using case studies of network meta-analysis in diabetes and depression, we demonstrate that the numerical values of SUCRA and P-Score are nearly identical.
Ranking treatments in frequentist network meta-analysis works without resampling. Like the SUCRA values, P-scores induce a ranking of all treatments that mostly follows that of the point estimates, but takes precision into account. However, neither SUCRA nor P-score offer a major advantage compared to looking at credible or confidence intervals.
网络荟萃分析用于比较针对同一病症的三种或更多种治疗方法。在贝叶斯框架内,对于每种治疗方法,其成为最佳治疗方法的概率,或者更一般地说,其具有特定排名的概率,可以从所有治疗方法的后验分布中推导出来。然后可以通过累积排名曲线下的面积(SUCRA)对治疗方法进行排名。为了在网络荟萃分析中比较治疗方法,我们提出了一种与SUCRA类似的频率论方法,我们称之为P值评分,它无需重抽样即可工作。
P值评分仅基于正态性假设下频率论网络荟萃分析估计的点估计值和标准误差,并且可以很容易地计算为单侧p值的均值。它们衡量一种治疗方法优于其他竞争治疗方法的确切程度的均值。
通过糖尿病和抑郁症网络荟萃分析的案例研究,我们证明SUCRA和P值评分的数值几乎相同。
在频率论网络荟萃分析中对治疗方法进行排名无需重抽样。与SUCRA值一样,P值评分会对所有治疗方法进行排名,其排名大多遵循点估计值的排名,但会考虑精度。然而,与查看可信区间或置信区间相比,SUCRA和P值评分都没有显著优势。