Suppr超能文献

利用观测到的与理论最大气孔导度和叶脉密度之间的现代植物性状关系来研究植物宏观进化模式。

Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution.

作者信息

McElwain Jennifer C, Yiotis Charilaos, Lawson Tracy

机构信息

Earth Institute, O'Brien Centre for Science, University College Dublin, Belfield, Ireland.

School of Biology and Environmental Science, University College Dublin, Belfield, Ireland.

出版信息

New Phytol. 2016 Jan;209(1):94-103. doi: 10.1111/nph.13579. Epub 2015 Jul 31.

Abstract

Understanding the drivers of geological-scale patterns in plant macroevolution is limited by a hesitancy to use measurable traits of fossils to infer palaeoecophysiological function. Here, scaling relationships between morphological traits including maximum theoretical stomatal conductance (gmax ) and leaf vein density (Dv ) and physiological measurements including operational stomatal conductance (gop ), saturated (Asat ) and maximum (Amax ) assimilation rates were investigated for 18 extant taxa in order to improve understanding of angiosperm diversification in the Cretaceous. Our study demonstrated significant relationships between gop , gmax and Dv that together can be used to estimate gas exchange and the photosynthetic capacities of fossils. We showed that acquisition of high gmax in angiosperms conferred a competitive advantage over gymnosperms by increasing the dynamic range (plasticity) of their gas exchange and expanding their ecophysiological niche space. We suggest that species with a high gmax (> 1400 mmol m(-2) s(-1) ) would have been capable of maintaining a high Amax as the atmospheric CO2 declined through the Cretaceous, whereas gymnosperms with a low gmax would experience severe photosynthetic penalty. Expansion of the ecophysiological niche space in angiosperms, afforded by coordinated evolution of high gmax , Dv and increased plasticity in gop , adds further functional insights into the mechanisms driving angiosperm speciation.

摘要

由于人们不愿利用化石的可测量特征来推断古生态生理功能,因此对植物宏观进化中地质尺度模式的驱动因素的理解受到限制。为了更好地理解白垩纪被子植物的多样化,我们研究了18个现存分类群的形态特征(包括最大理论气孔导度(gmax)和叶脉密度(Dv))与生理测量值(包括实际气孔导度(gop)、饱和(Asat)和最大(Amax)同化率)之间的尺度关系。我们的研究表明,gop、gmax和Dv之间存在显著关系,这些关系共同可用于估计化石的气体交换和光合能力。我们发现,被子植物获得高gmax通过增加其气体交换的动态范围(可塑性)并扩大其生态生理生态位空间,从而赋予了它们相对于裸子植物的竞争优势。我们认为,随着白垩纪大气中二氧化碳含量下降,gmax高(>1400 mmol m(-2) s(-1))的物种能够维持较高的Amax,而gmax低的裸子植物将遭受严重的光合惩罚。高gmax、Dv的协同进化以及gop可塑性的增加所带来的被子植物生态生理生态位空间的扩展,为驱动被子植物物种形成的机制提供了进一步的功能见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c72a/5014202/8d853d111a71/NPH-209-94-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验