Suppr超能文献

为纵向数据调整统计模型的规模。

Right-sizing statistical models for longitudinal data.

作者信息

Wood Phillip K, Steinley Douglas, Jackson Kristina M

机构信息

Department of Psychological Sciences, University of Missouri.

Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University.

出版信息

Psychol Methods. 2015 Dec;20(4):470-88. doi: 10.1037/met0000037. Epub 2015 Aug 3.

Abstract

Arguments are proposed that researchers using longitudinal data should consider more and less complex statistical model alternatives to their initially chosen techniques in an effort to "right-size" the model to the data at hand. Such model comparisons may alert researchers who use poorly fitting, overly parsimonious models to more complex, better-fitting alternatives and, alternatively, may identify more parsimonious alternatives to overly complex (and perhaps empirically underidentified and/or less powerful) statistical models. A general framework is proposed for considering (often nested) relationships between a variety of psychometric and growth curve models. A 3-step approach is proposed in which models are evaluated based on the number and patterning of variance components prior to selection of better-fitting growth models that explain both mean and variation-covariation patterns. The orthogonal free curve slope intercept (FCSI) growth model is considered a general model that includes, as special cases, many models, including the factor mean (FM) model (McArdle & Epstein, 1987), McDonald's (1967) linearly constrained factor model, hierarchical linear models (HLMs), repeated-measures multivariate analysis of variance (MANOVA), and the linear slope intercept (linearSI) growth model. The FCSI model, in turn, is nested within the Tuckerized factor model. The approach is illustrated by comparing alternative models in a longitudinal study of children's vocabulary and by comparing several candidate parametric growth and chronometric models in a Monte Carlo study.

摘要

有人提出,使用纵向数据的研究人员应考虑比其最初选择的技术更复杂和更简单的统计模型替代方案,以便使模型与手头的数据“适配得当”。这种模型比较可能会提醒使用拟合不佳、过度简约模型的研究人员,让他们考虑更复杂、拟合更好的替代方案,反之,也可能为过度复杂(可能在经验上识别不足和/或效力较低)的统计模型找到更简约的替代方案。本文提出了一个通用框架,用于考虑各种心理测量模型和增长曲线模型之间(通常是嵌套的)关系。本文还提出了一种三步法,即在选择能解释均值和变异协变模式的拟合更好的增长模型之前,根据方差成分的数量和模式对模型进行评估。正交自由曲线斜率截距(FCSI)增长模型被视为一个通用模型,作为特殊情况,它包含许多模型,包括因子均值(FM)模型(麦卡德尔和爱泼斯坦,1987)、麦克唐纳(1967)的线性约束因子模型、分层线性模型(HLM)、重复测量多元方差分析(MANOVA)以及线性斜率截距(linearSI)增长模型。反过来,FCSI模型又嵌套在塔克化因子模型中。通过在一项儿童词汇纵向研究中比较替代模型,以及在一项蒙特卡洛研究中比较几个候选参数增长模型和计时模型,对该方法进行了说明。

相似文献

1
Right-sizing statistical models for longitudinal data.
Psychol Methods. 2015 Dec;20(4):470-88. doi: 10.1037/met0000037. Epub 2015 Aug 3.
4
[Latent growth curve modeling for improvement of clinical symptoms on depression].
Zhonghua Liu Xing Bing Xue Za Zhi. 2013 Aug;34(8):832-5.
5
A longitudinal study of children's juice intake and growth: the juice controversy revisited.
J Am Diet Assoc. 2001 Apr;101(4):432-7. doi: 10.1016/S0002-8223(01)00111-0.
6
Individual differences in the onset of tense marking: a growth-curve analysis.
J Speech Lang Hear Res. 2006 Oct;49(5):984-1000. doi: 10.1044/1092-4388(2006/071).
7
Latent growth curve analysis with dichotomous items: Comparing four approaches.
Br J Math Stat Psychol. 2016 Feb;69(1):43-61. doi: 10.1111/bmsp.12058. Epub 2015 Jun 7.
8
Modelling human height and weight: a Bayesian approach towards model comparison.
Eur J Clin Nutr. 2016 Jun;70(6):656-61. doi: 10.1038/ejcn.2016.23. Epub 2016 Mar 30.
10
A meta-analytic approach to growth curve analysis.
Psychol Rep. 2000 Oct;87(2):441-65. doi: 10.2466/pr0.2000.87.2.441.

引用本文的文献

1
Right-sizing growth mixture models as multi-group growth and confirmatory factor models.
Behav Res Methods. 2025 Jul 30;57(9):243. doi: 10.3758/s13428-025-02722-2.
2
The Hitchhiker's guide to longitudinal models: A primer on model selection for repeated-measures methods.
Dev Cogn Neurosci. 2023 Oct;63:101281. doi: 10.1016/j.dcn.2023.101281. Epub 2023 Jul 26.
3
New Frontiers in Prevention Research Models: Commentary on the Special Issue.
Prev Sci. 2023 Apr;24(3):517-524. doi: 10.1007/s11121-023-01508-2. Epub 2023 Feb 23.
5
Limitations of cross-lagged panel models in addiction research and alternative models: An empirical example using project MATCH.
Psychol Addict Behav. 2022 May;36(3):271-283. doi: 10.1037/adb0000750. Epub 2021 Jun 3.
6
Residual-Based Algorithm for Growth Mixture Modeling: A Monte Carlo Simulation Study.
Front Psychol. 2021 Feb 26;12:618647. doi: 10.3389/fpsyg.2021.618647. eCollection 2021.
7
Delineating Developmental Periods in Adulthood Suggests Age-Related Shifts in the Correlates of Alcohol Use and Problems.
Alcohol Clin Exp Res. 2021 Feb;45(2):446-456. doi: 10.1111/acer.14535. Epub 2021 Jan 29.
10
Longitudinal modeling in developmental neuroimaging research: Common challenges, and solutions from developmental psychology.
Dev Cogn Neurosci. 2018 Oct;33:54-72. doi: 10.1016/j.dcn.2017.11.009. Epub 2017 Nov 22.

本文引用的文献

2
Generation and Objective Rotation of Generalized Learning Curves Using Matrix Language Products.
Multivariate Behav Res. 1992 Jan 1;27(1):21-9. doi: 10.1207/s15327906mbr2701_2.
3
A Unified Latent Curve, Latent State-Trait Analysis of the Developmental Trajectories and Correlates of Positive Orientation.
Multivariate Behav Res. 2012 Jun 18;47(3):341-68. doi: 10.1080/00273171.2012.673954.
4
Have Multilevel Models Been Structural Equation Models All Along?
Multivariate Behav Res. 2003 Oct 1;38(4):529-69. doi: 10.1207/s15327906mbr3804_5.
5
A Structural Modeling Approach to a Multilevel Random Coefficients Model.
Multivariate Behav Res. 2000 Jan 1;35(1):51-88. doi: 10.1207/S15327906MBR3501_3.
6
Teacher's Corner: Latent Curve Models and Latent Change Score Models Estimated in R.
Struct Equ Modeling. 2012;19(4):651-682. doi: 10.1080/10705511.2012.713275.
8
Non-linear Growth Models in M and SAS.
Struct Equ Modeling. 2009 Oct;16(4):676-701. doi: 10.1080/10705510903206055.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验