Suppr超能文献

胶质母细胞瘤来源的脑肿瘤起始细胞及其亲本肿瘤的比较基因组和遗传分析。

Comparative genomic and genetic analysis of glioblastoma-derived brain tumor-initiating cells and their parent tumors.

作者信息

Davis Brad, Shen Yaoqing, Poon Candice C, Luchman H Artee, Stechishin Owen D, Pontifex Carly S, Wu Wei, Kelly John J, Blough Michael D

机构信息

Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada (B.D., Y. S.); Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada (C.C.P., J.J.K.); Clark Smith Brain Tumour Research Centre, Southern Alberta Cancer Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada (C.C.P., C.S.P., W.W., J.J.K., M.D.B.); Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada (H.A.L., O.D.S.).

出版信息

Neuro Oncol. 2016 Mar;18(3):350-60. doi: 10.1093/neuonc/nov143. Epub 2015 Aug 5.

Abstract

BACKGROUND

Glioblastoma (GBM) is a fatal cancer that has eluded major therapeutic advances. Failure to make progress may reflect the absence of a human GBM model that could be used to test compounds for anti-GBM activity. In this respect, the development of brain tumor-initiating cell (BTIC) cultures is a step forward because BTICs appear to capture the molecular diversity of GBM better than traditional glioma cell lines. Here, we perform a comparative genomic and genetic analysis of BTICs and their parent tumors as preliminary evaluation of the BTIC model.

METHODS

We assessed single nucleotide polymorphisms (SNPs), genome-wide copy number variations (CNVs), gene expression patterns, and molecular subtypes of 11 established BTIC lines and matched parent tumors.

RESULTS

Although CNV differences were noted, BTICs retained the major genomic alterations characteristic of GBM. SNP patterns were similar between BTICs and tumors. Importantly, recurring SNP or CNV alterations specific to BTICs were not seen. Comparative gene expression analysis and molecular subtyping revealed differences between BTICs and GBMs. These differences formed the basis of a 63-gene expression signature that distinguished cells from tumors; differentially expressed genes primarily involved metabolic processes. We also derived a set of 73 similarly expressed genes; these genes were not associated with specific biological functions.

CONCLUSIONS

Although not identical, established BTIC lines preserve the core molecular alterations seen in their parent tumors, as well as the genomic hallmarks of GBM, without acquiring recurring BTIC-specific changes.

摘要

背景

胶质母细胞瘤(GBM)是一种致命的癌症,尚未取得重大治疗进展。未能取得进展可能反映出缺乏可用于测试化合物抗GBM活性的人类GBM模型。在这方面,脑肿瘤起始细胞(BTIC)培养物的发展是向前迈出的一步,因为BTIC似乎比传统胶质瘤细胞系能更好地捕捉GBM的分子多样性。在此,我们对BTIC及其亲本肿瘤进行比较基因组和遗传分析,作为对BTIC模型的初步评估。

方法

我们评估了11个已建立的BTIC系及其匹配的亲本肿瘤的单核苷酸多态性(SNP)﹑全基因组拷贝数变异(CNV)﹑基因表达模式和分子亚型。

结果

尽管注意到CNV存在差异,但BTIC保留了GBM的主要基因组改变特征。BTIC与肿瘤之间的SNP模式相似。重要的是,未发现BTIC特有的复发性SNP或CNV改变。比较基因表达分析和分子亚型分析揭示了BTIC与GBM之间的差异。这些差异构成了一个63个基因的表达特征的基础,该特征可区分细胞与肿瘤;差异表达的基因主要涉及代谢过程。我们还获得了一组73个表达相似的基因;这些基因与特定生物学功能无关。

结论

尽管不完全相同,但已建立的BTIC系保留了其亲本肿瘤中所见的核心分子改变以及GBM的基因组特征,而未获得复发性BTIC特异性变化。

相似文献

1
Comparative genomic and genetic analysis of glioblastoma-derived brain tumor-initiating cells and their parent tumors.
Neuro Oncol. 2016 Mar;18(3):350-60. doi: 10.1093/neuonc/nov143. Epub 2015 Aug 5.
2
Stattic and metformin inhibit brain tumor initiating cells by reducing STAT3-phosphorylation.
Oncotarget. 2017 Jan 31;8(5):8250-8263. doi: 10.18632/oncotarget.14159.
3
Fibrinogen in the glioblastoma microenvironment contributes to the invasiveness of brain tumor-initiating cells.
Brain Pathol. 2021 Sep;31(5):e12947. doi: 10.1111/bpa.12947. Epub 2021 Mar 10.
4
Comprehensive genomic profiling of glioblastoma tumors, BTICs, and xenografts reveals stability and adaptation to growth environments.
Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):19098-19108. doi: 10.1073/pnas.1813495116. Epub 2019 Aug 30.
5
Bmi1 regulates human glioblastoma stem cells through activation of differential gene networks in CD133+ brain tumor initiating cells.
J Neurooncol. 2019 Jul;143(3):417-428. doi: 10.1007/s11060-019-03192-1. Epub 2019 May 21.
6
Discovering gene-environment interactions in glioblastoma through a comprehensive data integration bioinformatics method.
Neurotoxicology. 2013 Mar;35:1-14. doi: 10.1016/j.neuro.2012.11.001. Epub 2012 Dec 20.
8
Precursor States of Brain Tumor Initiating Cell Lines Are Predictive of Survival in Xenografts and Associated with Glioblastoma Subtypes.
Stem Cell Reports. 2015 Jul 14;5(1):1-9. doi: 10.1016/j.stemcr.2015.05.010. Epub 2015 Jun 18.

引用本文的文献

1
5
Ex vivo drug sensitivity screening predicts response to temozolomide in glioblastoma patients and identifies candidate biomarkers.
Br J Cancer. 2023 Oct;129(8):1327-1338. doi: 10.1038/s41416-023-02402-y. Epub 2023 Aug 24.
6
Oncolytic herpes simplex viruses for the treatment of glioma and targeting glioblastoma stem-like cells.
Front Cell Infect Microbiol. 2023 May 31;13:1206111. doi: 10.3389/fcimb.2023.1206111. eCollection 2023.
8
Tumor-targeting cell-penetrating peptide, p28, for glioblastoma imaging and therapy.
Front Oncol. 2022 Jul 22;12:940001. doi: 10.3389/fonc.2022.940001. eCollection 2022.
10
A Novel Defined Endoplasmic Reticulum Stress-Related lncRNA Signature for Prognosis Prediction and Immune Therapy in Glioma.
Front Oncol. 2022 Jun 30;12:930923. doi: 10.3389/fonc.2022.930923. eCollection 2022.

本文引用的文献

1
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.
Science. 2014 Jun 20;344(6190):1396-401. doi: 10.1126/science.1254257. Epub 2014 Jun 12.
2
The somatic genomic landscape of glioblastoma.
Cell. 2013 Oct 10;155(2):462-77. doi: 10.1016/j.cell.2013.09.034.
3
An integrative characterization of recurrent molecular aberrations in glioblastoma genomes.
Nucleic Acids Res. 2013 Oct;41(19):8803-21. doi: 10.1093/nar/gkt656. Epub 2013 Jul 31.
5
Spontaneous loss of heterozygosity leading to homozygous R132H in a patient-derived IDH1 mutant cell line.
Neuro Oncol. 2013 Aug;15(8):979-80. doi: 10.1093/neuonc/not064. Epub 2013 Jun 11.
6
TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6021-6. doi: 10.1073/pnas.1303607110. Epub 2013 Mar 25.
8
Transforming fusions of FGFR and TACC genes in human glioblastoma.
Science. 2012 Sep 7;337(6099):1231-5. doi: 10.1126/science.1220834. Epub 2012 Jul 26.
10
Malignant glioma: lessons from genomics, mouse models, and stem cells.
Cell. 2012 Mar 30;149(1):36-47. doi: 10.1016/j.cell.2012.03.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验