Suppr超能文献

噬菌体-蛋白酶-肽:一种实现对活细菌病原体进行多重检测的新型三联体。

Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens.

作者信息

Alcaine S D, Tilton L, Serrano M A C, Wang M, Vachet R W, Nugen S R

机构信息

Department of Food Science, University of Massachusetts, 246 Chenoweth Laboratory, 102 Holdsworth Way, Amherst, MA, 01003, USA.

出版信息

Appl Microbiol Biotechnol. 2015 Oct;99(19):8177-85. doi: 10.1007/s00253-015-6867-8. Epub 2015 Aug 7.

Abstract

Bacteriophages represent rapid, readily targeted, and easily produced molecular probes for the detection of bacterial pathogens. Molecular biology techniques have allowed researchers to make significant advances in the bioengineering of bacteriophage to further improve speed and sensitivity of detection. Despite their host specificity, bacteriophages have not been meaningfully leveraged in multiplex detection of bacterial pathogens. We propose a proof-of-principal phage-based scheme to enable multiplex detection. Our scheme involves bioengineering bacteriophage to carry a gene for a specific protease, which is expressed during infection of the target cell. Upon lysis, the protease is released to cleave a reporter peptide, and the signal detected. Here we demonstrate the successful (i) modification of T7 bacteriophage to carry tobacco etch virus (TEV) protease; (ii) expression of TEV protease by Escherichia coli following infection by our modified T7, an average of 2000 units of protease per phage are produced during infection; and (iii) proof-of-principle detection of E. coli in 3 h after a primary enrichment via TEV protease activity using a fluorescent peptide and using a designed target peptide for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS) analysis. This proof-of-principle can be translated to other phage-protease-peptide combinations to enable multiplex bacterial detection and readily adopted on multiple platforms, like MALDI-TOF MS or fluorescent readers, commonly found in labs.

摘要

噬菌体是用于检测细菌病原体的快速、易于靶向且易于生产的分子探针。分子生物学技术使研究人员在噬菌体生物工程方面取得了重大进展,以进一步提高检测速度和灵敏度。尽管噬菌体具有宿主特异性,但它们尚未在细菌病原体的多重检测中得到有效利用。我们提出了一种基于噬菌体的原理验证方案,以实现多重检测。我们的方案包括对噬菌体进行生物工程改造,使其携带一种特定蛋白酶的基因,该基因在感染靶细胞时表达。裂解后,蛋白酶被释放出来切割报告肽,并检测信号。在这里,我们展示了成功地(i)对T7噬菌体进行改造,使其携带烟草蚀纹病毒(TEV)蛋白酶;(ii)经改造的T7噬菌体感染大肠杆菌后,大肠杆菌表达TEV蛋白酶,感染期间每个噬菌体平均产生2000单位的蛋白酶;以及(iii)通过使用荧光肽并利用设计的靶肽进行基质辅助激光解吸/电离飞行时间质谱分析(MALDI-TOF MS)分析,在初次富集后3小时内对大肠杆菌进行原理验证检测。这一原理验证可以转化为其他噬菌体-蛋白酶-肽组合,以实现多重细菌检测,并易于在实验室中常见的多个平台上采用,如MALDI-TOF MS或荧光读数器。

相似文献

1
Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens.
Appl Microbiol Biotechnol. 2015 Oct;99(19):8177-85. doi: 10.1007/s00253-015-6867-8. Epub 2015 Aug 7.
5
Detection of protease and engineered phage-infected bacteria using peptide-graphene oxide nanosensors.
Anal Bioanal Chem. 2019 May;411(12):2487-2492. doi: 10.1007/s00216-019-01766-6. Epub 2019 Mar 23.
6
Bioengineering bacteriophages to enhance the sensitivity of phage amplification-based paper fluidic detection of bacteria.
Biosens Bioelectron. 2016 Aug 15;82:14-9. doi: 10.1016/j.bios.2016.03.047. Epub 2016 Mar 22.
10
Sensitive detection of live Escherichia coli by bacteriophage amplification-coupled immunoassay on the Luminex® MAGPIX instrument.
J Microbiol Methods. 2018 Sep;152:143-147. doi: 10.1016/j.mimet.2018.07.022. Epub 2018 Aug 2.

引用本文的文献

3
T7 Phage as an Emerging Nanobiomaterial with Genetically Tunable Target Specificity.
Adv Sci (Weinh). 2022 Feb;9(4):e2103645. doi: 10.1002/advs.202103645. Epub 2021 Dec 16.
4
Engineering Biorthogonal Phage-Based Nanobots for Ultrasensitive, Bacteria Detection.
ACS Appl Bio Mater. 2020 Sep 21;3(9):5824-5831. doi: 10.1021/acsabm.0c00546. Epub 2020 Jun 23.
6
Methods for detection of viable foodborne pathogens: current state-of-art and future prospects.
Appl Microbiol Biotechnol. 2020 May;104(10):4281-4288. doi: 10.1007/s00253-020-10542-x. Epub 2020 Mar 26.
8
Integrating recognition elements with nanomaterials for bacteria sensing.
Chem Soc Rev. 2017 Mar 6;46(5):1272-1283. doi: 10.1039/c6cs00313c.
9
Engineering bacteriophage for a pragmatic low-resource setting bacterial diagnostic platform.
Bioengineered. 2016 Apr;7(3):132-6. doi: 10.1080/21655979.2016.1184386. Epub 2016 May 31.

本文引用的文献

1
Bacteriophage-based nanoprobes for rapid bacteria separation.
Nanoscale. 2015 Oct 21;7(39):16230-6. doi: 10.1039/c5nr03779d.
2
The ongoing revolution of MALDI-TOF mass spectrometry for microbiology reaches tropical Africa.
Am J Trop Med Hyg. 2015 Mar;92(3):641-7. doi: 10.4269/ajtmh.14-0406. Epub 2015 Jan 19.
4
Limitations of Using Propidium Monoazide with qPCR to Discriminate between Live and Dead Legionella in Biofilm Samples.
Microbiol Insights. 2014 Sep 4;7:15-24. doi: 10.4137/MBI.S17723. eCollection 2014.
5
Activity-based profiling of proteases.
Annu Rev Biochem. 2014;83:249-73. doi: 10.1146/annurev-biochem-060713-035352.
6
Environmental responses and phage susceptibility in foodborne pathogens: implications for improving applications in food safety.
Curr Opin Biotechnol. 2014 Apr;26:45-9. doi: 10.1016/j.copbio.2013.09.001. Epub 2013 Sep 25.
7
Phage-based detection of bacterial pathogens.
Analyst. 2014 Jun 7;139(11):2617-26. doi: 10.1039/c4an00208c.
8
Application of bacteriophages for detection of foodborne pathogens.
Bacteriophage. 2014 Jan 1;4(1):e28137. doi: 10.4161/bact.28137. Epub 2014 Feb 7.
10
Feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) networking in university hospitals in Brussels.
Eur J Clin Microbiol Infect Dis. 2014 May;33(5):745-54. doi: 10.1007/s10096-013-2006-6. Epub 2013 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验