School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland;
Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; and.
Am J Physiol Cell Physiol. 2015 Oct 1;309(7):C501-9. doi: 10.1152/ajpcell.00121.2015. Epub 2015 Aug 5.
O2 plays a pivotal role in aerobic metabolism and regulation of cell and tissue function. Local differences and fluctuations in tissue O2 levels are well documented; however, the physiological significance of O2 microgradients, particularly at the subcellular level, remains poorly understood. Using the cell-penetrating phosphorescent O2 probe Pt-Glc and confocal fluorescence microscopy, we visualized O2 distribution in individual giant (>100-μm) umbrella cells located superficially in the urinary bladder epithelium. We optimized conditions for in vivo phosphorescent staining of the inner surface of the mouse bladder and subsequent ex vivo analysis of excised live tissue. Imaging experiments revealed significant (≤85 μM) and heterogeneous deoxygenation within respiring umbrella cells, with radial O2 gradients of up to 40 μM across the cell, or ∼0.6 μM/μm. Deeply deoxygenated (5-15 μM O2) regions were seen to correspond to the areas enriched with polarized mitochondria. Pharmacological activation of mitochondrial respiration decreased oxygenation and O2 gradients in umbrella cells, while inhibition with antimycin A dissipated the gradients and caused gradual reoxygenation of the tissue to ambient levels. Detailed three-dimensional maps of O2 distribution potentially can be used for the modeling of intracellular O2-dependent enzymatic reactions and downstream processes, such as hypoxia-inducible factor signaling. Further ex vivo and in vivo studies on intracellular and tissue O2 gradients using confocal imaging can shed light on the molecular mechanisms regulating O2-dependent (patho)physiological processes in the bladder and other tissues.
O2 在有氧代谢和细胞及组织功能调节中起着关键作用。组织中 O2 水平的局部差异和波动已有充分记录;然而,O2 微梯度的生理意义,特别是在亚细胞水平,仍知之甚少。本研究使用穿透细胞膜的磷光 O2 探针 Pt-Glc 和共聚焦荧光显微镜,可视化了单个位于膀胱上皮浅层的巨大(>100-μm)伞细胞内的 O2 分布。我们优化了在体磷光染色膀胱内表面的条件,并对离体活组织进行了后续分析。成像实验揭示了呼吸伞细胞内显著(≤85 μM)和异质去氧,跨细胞的 O2 梯度高达 40 μM,或约 0.6 μM/μm。观察到深度去氧(5-15 μM O2)区域与富含极化线粒体的区域相对应。线粒体呼吸的药理学激活降低了伞细胞的氧合和 O2 梯度,而抗霉素 A 的抑制则消除了梯度,并导致组织逐渐复氧至环境水平。O2 分布的详细三维图谱可用于建模细胞内 O2 依赖性酶反应和下游过程,如缺氧诱导因子信号。使用共聚焦成像对细胞内和组织 O2 梯度进行的进一步离体和在体研究可以揭示调节膀胱和其他组织中 O2 依赖性(病理)生理过程的分子机制。