Suppr超能文献

一种带有突变型Slc24a1的静止性夜盲症小鼠新模型解释了相关人类疾病的病理生理学。

A new mouse model for stationary night blindness with mutant Slc24a1 explains the pathophysiology of the associated human disease.

作者信息

Vinberg Frans, Wang Tian, Molday Robert S, Chen Jeannie, Kefalov Vladimir J

机构信息

Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.

Cell and Neurobiology, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA and.

出版信息

Hum Mol Genet. 2015 Oct 15;24(20):5915-29. doi: 10.1093/hmg/ddv319. Epub 2015 Aug 5.

Abstract

Mutations that affect calcium homeostasis (Ca(2+)) in rod photoreceptors are linked to retinal degeneration and visual disorders such as retinitis pigmentosa and congenital stationary night blindness (CSNB). It is thought that the concentration of Ca(2+) in rod outer segments is controlled by a dynamic balance between influx via cGMP-gated (CNG) channels and extrusion via Na(+)/Ca(2+), K(+) exchangers (NCKX1). The extrusion-driven lowering of rod [Ca(2+)]i following light exposure controls their light adaptation and response termination. Mutant NCKX1 has been linked to autosomal-recessive stationary night blindness. However, whether NCKX1 contributes to light adaptation has not been directly tested and the mechanisms by which human NCKX1 mutations cause night blindness are not understood. Here, we report that the deletion of NCKX1 in mice results in malformed outer segment disks, suppressed expression and function of rod CNG channels and a subsequent 100-fold reduction in rod responses, while preserving normal cone responses. The compensating loss of CNG channel function in the absence of NCKX1-mediated Ca(2+) extrusion may prevent toxic Ca(2+) buildup and provides an explanation for the stationary nature of the associated disorder in humans. Surprisingly, the lack of NCKX1 did not compromise rod background light adaptation, suggesting additional Ca(2+)-extruding mechanisms exist in these cells.

摘要

影响视杆光感受器钙稳态(Ca(2+))的突变与视网膜变性及视觉障碍有关,如色素性视网膜炎和先天性静止性夜盲(CSNB)。据认为,视杆外段Ca(2+)的浓度受通过环鸟苷酸门控(CNG)通道内流与通过钠/钙、钾交换体(NCKX1)外流之间动态平衡的控制。光照后由外流驱动的视杆[Ca(2+)]i降低控制着它们的光适应和反应终止。突变型NCKX1与常染色体隐性静止性夜盲有关。然而,NCKX1是否有助于光适应尚未得到直接验证,人类NCKX1突变导致夜盲的机制也尚不清楚。在此,我们报告小鼠中NCKX1的缺失导致外段盘畸形、视杆CNG通道的表达和功能受到抑制,随后视杆反应降低100倍,而视锥反应保持正常。在缺乏NCKX1介导的Ca(2+)外流情况下CNG通道功能的代偿性丧失可能会阻止有毒的Ca(2+)积累,并为人类相关疾病的静止性质提供了解释。令人惊讶的是,缺乏NCKX1并未损害视杆背景光适应,这表明这些细胞中存在其他Ca(2+)外流机制。

相似文献

2
Cav1.4 IT mouse as model for vision impairment in human congenital stationary night blindness type 2.
Channels (Austin). 2013 Nov-Dec;7(6):503-13. doi: 10.4161/chan.26368. Epub 2013 Sep 19.
3
A Naturally Occurring Canine Model of Autosomal Recessive Congenital Stationary Night Blindness.
PLoS One. 2015 Sep 14;10(9):e0137072. doi: 10.1371/journal.pone.0137072. eCollection 2015.
5
Riggs-type dominant congenital stationary night blindness: ERG findings, a new GNAT1 mutation and a systemic association.
Doc Ophthalmol. 2018 Aug;137(1):57-62. doi: 10.1007/s10633-018-9651-0. Epub 2018 Jul 26.
6
Photoreceptor degeneration in two mouse models for congenital stationary night blindness type 2.
PLoS One. 2014 Jan 21;9(1):e86769. doi: 10.1371/journal.pone.0086769. eCollection 2014.
8
Visual signal pathway reorganization in the Cacna1f mutant rat model.
Invest Ophthalmol Vis Sci. 2013 Mar 19;54(3):1988-97. doi: 10.1167/iovs.12-10706.

引用本文的文献

2
The quantification of zebrafish ocular-associated proteins provides hints for sex-biased visual impairments and perception.
Heliyon. 2024 Jun 13;10(12):e33057. doi: 10.1016/j.heliyon.2024.e33057. eCollection 2024 Jun 30.
3
Light regulation of rhodopsin distribution during outer segment renewal in murine rod photoreceptors.
Curr Biol. 2024 Apr 8;34(7):1492-1505.e6. doi: 10.1016/j.cub.2024.02.070. Epub 2024 Mar 19.
7
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies.
Biomolecules. 2023 Feb 1;13(2):271. doi: 10.3390/biom13020271.
8
Regulation of K-Dependent Na/Ca-Exchangers (NCKX).
Int J Mol Sci. 2022 Dec 29;24(1):598. doi: 10.3390/ijms24010598.
9
Transduction and Adaptation Mechanisms in the Cilium or Microvilli of Photoreceptors and Olfactory Receptors From Insects to Humans.
Front Cell Neurosci. 2021 Apr 1;15:662453. doi: 10.3389/fncel.2021.662453. eCollection 2021.
10
Biochemistry and physiology of zebrafish photoreceptors.
Pflugers Arch. 2021 Sep;473(9):1569-1585. doi: 10.1007/s00424-021-02528-z. Epub 2021 Feb 17.

本文引用的文献

2
Ex vivo ERG analysis of photoreceptors using an in vivo ERG system.
Vision Res. 2014 Aug;101:108-17. doi: 10.1016/j.visres.2014.06.003. Epub 2014 Jun 21.
3
The SLC24 family of K⁺-dependent Na⁺-Ca²⁺ exchangers: structure-function relationships.
Curr Top Membr. 2014;73:263-87. doi: 10.1016/B978-0-12-800223-0.00007-4.
6
Photoreceptor signaling: supporting vision across a wide range of light intensities.
J Biol Chem. 2012 Jan 13;287(3):1620-6. doi: 10.1074/jbc.R111.305243. Epub 2011 Nov 10.
7
G-protein betagamma-complex is crucial for efficient signal amplification in vision.
J Neurosci. 2011 Jun 1;31(22):8067-77. doi: 10.1523/JNEUROSCI.0174-11.2011.
9
A key role for cyclic nucleotide gated (CNG) channels in cGMP-related retinitis pigmentosa.
Hum Mol Genet. 2011 Mar 1;20(5):941-7. doi: 10.1093/hmg/ddq539. Epub 2010 Dec 10.
10
Channel modulation and the mechanism of light adaptation in mouse rods.
J Neurosci. 2010 Dec 1;30(48):16232-40. doi: 10.1523/JNEUROSCI.2868-10.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验