Suppr超能文献

自由生活微生物中胞外酶的模型:哪种策略会成功?

A model of extracellular enzymes in free-living microbes: which strategy pays off?

作者信息

Traving Sachia J, Thygesen Uffe H, Riemann Lasse, Stedmon Colin A

机构信息

Centre for Ocean Life, Marine Biological Section, University of Copenhagen, Helsingør, Denmark

Centre for Ocean Life, National Institute for Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark.

出版信息

Appl Environ Microbiol. 2015 Nov;81(21):7385-93. doi: 10.1128/AEM.02070-15. Epub 2015 Aug 7.

Abstract

An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration.

摘要

一种初始建模方法被用于分析单个、不运动、自由生活的异养细菌细胞如何优化其胞外酶的部署。自由生活的细胞生活在稀薄且复杂的底物环境中,为了获取足够的底物,它们的胞外酶必须得到有效利用。该模型表明,附着于表面的酶和游离酶会产生独特的酶和底物场,并且每种部署策略都有其独特的优势。对于单个细胞而言,附着于表面的酶被认为是最具成本效益的策略。这种策略会使潜在底物浓度降低到非常低的水平。另一方面,游离酶会产生截然不同的底物场,这表明如果自由生活的细胞进行群体觅食或遇到高底物浓度,该策略会有显著优势。游动对附着酶策略有轻微的积极影响,而对游离酶策略则有消极影响。这项研究的结果表明,海洋中特定的溶解有机化合物可能会持续存在于低于生物利用阈值浓度的水平。这有助于解释海洋溶解有机物(DOM)的持久性和明显的难降解状态。因此,微生物胞外酶策略对于更大尺度的过程具有重要意义,例如塑造DOM在海洋碳固存中的作用。

相似文献

1
A model of extracellular enzymes in free-living microbes: which strategy pays off?
Appl Environ Microbiol. 2015 Nov;81(21):7385-93. doi: 10.1128/AEM.02070-15. Epub 2015 Aug 7.
2
Microbial extracellular enzymes and the marine carbon cycle.
Ann Rev Mar Sci. 2011;3:401-25. doi: 10.1146/annurev-marine-120709-142731.
3
Upflow anaerobic sludge blanket reactor--a review.
Indian J Environ Health. 2001 Apr;43(2):1-82.
4
Production of refractory dissolved organic matter by bacteria.
Science. 2001 May 4;292(5518):917-20. doi: 10.1126/science.1057627.
5
Evidence for key enzymatic controls on metabolism of Arctic river organic matter.
Glob Chang Biol. 2014 Apr;20(4):1089-100. doi: 10.1111/gcb.12416. Epub 2014 Feb 12.
6
How to live at very low substrate concentration.
Water Res. 2010 Sep;44(17):4826-37. doi: 10.1016/j.watres.2010.07.023. Epub 2010 Jul 16.
7
The impact of microbial metabolism on marine dissolved organic matter.
Ann Rev Mar Sci. 2011;3:567-99. doi: 10.1146/annurev-marine-120308-081003.
8
Variable ageing and storage of dissolved organic components in the open ocean.
Nature. 2004 Aug 19;430(7002):877-81. doi: 10.1038/nature02780.
9
MODELING THE RELEASE OF DISSOLVED ORGANIC MATTER BY PHYTOPLANKTON(1).
J Phycol. 2008 Oct;44(5):1171-87. doi: 10.1111/j.1529-8817.2008.00562.x. Epub 2008 Sep 3.
10
Linking lifestyle and foraging strategies of marine bacteria: selfish behaviour of particle-attached bacteria in the northern Adriatic Sea.
Environ Microbiol Rep. 2022 Aug;14(4):549-558. doi: 10.1111/1758-2229.13059. Epub 2022 Mar 31.

引用本文的文献

1
Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota.
Nat Commun. 2024 Dec 30;15(1):10906. doi: 10.1038/s41467-024-55268-w.
4
Predictions of rhizosphere microbiome dynamics with a genome-informed and trait-based energy budget model.
Nat Microbiol. 2024 Feb;9(2):421-433. doi: 10.1038/s41564-023-01582-w. Epub 2024 Feb 5.
5
Release of cell-free enzymes by marine pelagic fungal strains.
Front Fungal Biol. 2023 Nov 6;4:1209265. doi: 10.3389/ffunb.2023.1209265. eCollection 2023.
6
Enzyme Profiling and Identification of Endophytic and Rhizospheric Bacteria Isolated from .
Microorganisms. 2022 Oct 26;10(11):2112. doi: 10.3390/microorganisms10112112.
7
Preservation of exopolymeric substances in estuarine sediments.
Front Microbiol. 2022 Aug 18;13:921154. doi: 10.3389/fmicb.2022.921154. eCollection 2022.
8
Linking lifestyle and foraging strategies of marine bacteria: selfish behaviour of particle-attached bacteria in the northern Adriatic Sea.
Environ Microbiol Rep. 2022 Aug;14(4):549-558. doi: 10.1111/1758-2229.13059. Epub 2022 Mar 31.
9
A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS).
Nat Protoc. 2021 Nov;16(11):5030-5082. doi: 10.1038/s41596-021-00593-3. Epub 2021 Oct 11.
10
Physiology of microalgal biofilm: a review on prediction of adhesion on substrates.
Bioengineered. 2021 Dec;12(1):7577-7599. doi: 10.1080/21655979.2021.1980671.

本文引用的文献

1
Ocean chemistry. Dilution limits dissolved organic carbon utilization in the deep ocean.
Science. 2015 Apr 17;348(6232):331-3. doi: 10.1126/science.1258955. Epub 2015 Mar 19.
4
Possible influence of bacterial quorum sensing on the hydrolysis of sinking particulate organic carbon in marine environments.
Environ Microbiol Rep. 2011 Dec;3(6):682-8. doi: 10.1111/j.1758-2229.2011.00281.x. Epub 2011 Sep 29.
5
Optimality and robustness in quorum sensing (QS)-mediated regulation of a costly public good enzyme.
Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19810-5. doi: 10.1073/pnas.1211072109. Epub 2012 Nov 9.
6
Marine microbes see a sea of gradients.
Science. 2012 Nov 2;338(6107):628-33. doi: 10.1126/science.1208929.
7
Bacterial versus archaeal origin of extracellular enzymatic activity in the Northeast Atlantic deep waters.
Microb Ecol. 2013 Feb;65(2):277-88. doi: 10.1007/s00248-012-0126-7. Epub 2012 Sep 27.
8
Cellular cooperation: insights from microbes.
Trends Cell Biol. 2013 Jan;23(1):9-15. doi: 10.1016/j.tcb.2012.08.010. Epub 2012 Sep 19.
9
Recalcitrant dissolved organic carbon fractions.
Ann Rev Mar Sci. 2013;5:421-45. doi: 10.1146/annurev-marine-120710-100757. Epub 2012 Jul 16.
10
Microbial extracellular enzymes and the marine carbon cycle.
Ann Rev Mar Sci. 2011;3:401-25. doi: 10.1146/annurev-marine-120709-142731.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验