Eckstein Martin, Yang Chung-Hsin, Kubin Markus, Frassetto Fabio, Poletto Luca, Ritze Hans-Hermann, Vrakking Marc J J, Kornilov Oleg
†Max-Born-Institute, Max-Born-Straße 2A, 12489 Berlin, Germany.
‡National Research Council, Institute of Photonics and Nanotechnologies (CNR-IFN), via Trasea 7, I-35131 Padova, Italy.
J Phys Chem Lett. 2015 Feb 5;6(3):419-25. doi: 10.1021/jz5025542. Epub 2015 Jan 16.
Ionization of nitrogen by extreme ultraviolet (XUV) light from the Sun has recently been recognized as an important driver of chemical reactions in the atmosphere of Titan. XUV photons with energies of 24 eV and above convert inert nitrogen molecules into reactive neutral and ionic fragments that initiate chemical reactions. Understanding the XUV-induced fragmentation poses significant challenges to modern theory owing to its ultrafast time scales, complex electronic rearrangements, and strong dependence on the XUV photon energy. Here, we apply femtosecond time-resolved photoelectron and photoion spectroscopy to study dissociative ionization of nitrogen, the most abundant molecule in Titan's atmosphere, at selected XUV photon energies using a table-top XUV time-compensating monochromator. We probe the resulting dynamics using a time-delayed infrared (IR) ionization pulse. Coupled with ab initio calculations, the results allow us to assign the major dissociation channels resulting from production of an inner-valence hole, with important implications for models of Titan's XUV-driven atmospheric chemistry.
来自太阳的极紫外(XUV)光使泰坦大气中的氮发生电离,这一现象最近被认为是泰坦大气中化学反应的重要驱动因素。能量在24电子伏特及以上的XUV光子将惰性氮分子转化为具有反应活性的中性和离子碎片,从而引发化学反应。由于其超快的时间尺度、复杂的电子重排以及对XUV光子能量的强烈依赖性,理解XUV诱导的碎片化对现代理论构成了重大挑战。在此,我们应用飞秒时间分辨光电子和光离子光谱,使用台式XUV时间补偿单色仪,在选定的XUV光子能量下研究泰坦大气中最丰富的分子——氮的解离电离。我们使用延迟红外(IR)电离脉冲探测由此产生的动力学。结合从头算计算,这些结果使我们能够确定由内价空穴产生导致的主要解离通道,这对泰坦XUV驱动的大气化学模型具有重要意义。