Taha Abdel Aziz, Hanbury Allan
TU Wien, Institute of Software Technology and Interactive Systems, Favoritenstrasse 9-11, Vienna, A-1040, Austria.
BMC Med Imaging. 2015 Aug 12;15:29. doi: 10.1186/s12880-015-0068-x.
Medical Image segmentation is an important image processing step. Comparing images to evaluate the quality of segmentation is an essential part of measuring progress in this research area. Some of the challenges in evaluating medical segmentation are: metric selection, the use in the literature of multiple definitions for certain metrics, inefficiency of the metric calculation implementations leading to difficulties with large volumes, and lack of support for fuzzy segmentation by existing metrics.
First we present an overview of 20 evaluation metrics selected based on a comprehensive literature review. For fuzzy segmentation, which shows the level of membership of each voxel to multiple classes, fuzzy definitions of all metrics are provided. We present a discussion about metric properties to provide a guide for selecting evaluation metrics. Finally, we propose an efficient evaluation tool implementing the 20 selected metrics. The tool is optimized to perform efficiently in terms of speed and required memory, also if the image size is extremely large as in the case of whole body MRI or CT volume segmentation. An implementation of this tool is available as an open source project.
We propose an efficient evaluation tool for 3D medical image segmentation using 20 evaluation metrics and provide guidelines for selecting a subset of these metrics that is suitable for the data and the segmentation task.
医学图像分割是图像处理的一个重要步骤。通过比较图像来评估分割质量是衡量该研究领域进展的关键部分。评估医学分割时面临的一些挑战包括:指标选择、文献中某些指标存在多种定义、指标计算实现效率低下导致处理大量数据困难以及现有指标对模糊分割缺乏支持。
首先,我们基于全面的文献综述给出了20种评估指标的概述。对于显示每个体素属于多个类别的隶属度的模糊分割,给出了所有指标的模糊定义。我们对指标特性进行了讨论,为评估指标的选择提供指导。最后,我们提出了一个实现所选20种指标的高效评估工具。该工具在速度和所需内存方面进行了优化,即使在处理如全身MRI或CT体积分割这种图像尺寸极大的情况时也能高效运行。此工具的一个实现版本作为开源项目可供使用。
我们提出了一个使用20种评估指标的用于3D医学图像分割的高效评估工具,并为选择适合数据和分割任务的这些指标的子集提供了指导方针。