Suppr超能文献

万古霉素耐药性VanT丝氨酸消旋酶的结构与功能适应性

Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases.

作者信息

Meziane-Cherif Djalal, Stogios Peter J, Evdokimova Elena, Egorova Olga, Savchenko Alexei, Courvalin Patrice

机构信息

Institut Pasteur, Unité des Agents Antibactériens, Paris, France.

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada Center for Structural Genomics of Infectious Diseases (CSGID).

出版信息

mBio. 2015 Aug 11;6(4):e00806. doi: 10.1128/mBio.00806-15.

Abstract

UNLABELLED

Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl-D-alanine target of peptidoglycan precursors with D-alanyl-D-lactate or D-alanyl-D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the L-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria.

IMPORTANCE

Vancomycin is one of the drugs of last resort against Gram-positive antibiotic-resistant pathogens. However, bacteria have evolved a sophisticated mechanism which remodels the drug target, the D-alanine ending precursors in cell wall synthesis, into precursors terminating with D-lactate or D-serine, to which vancomycin has less affinity. D-Ser is synthesized by VanT serine racemase, which has two unusual characteristics: (i) it is one of the few serine racemases identified in bacteria and (ii) it contains a membrane-bound domain involved in L-Ser uptake. The structure of the catalytic domain of VanTG showed high similarity to alanine racemases, and we identified three specific active site substitutions responsible for L-Ser specificity. The data provide the molecular basis for VanT evolution to a bifunctional enzyme coordinating both transport and racemization. Our findings also illustrate the evolution of the essential alanine racemase into a vancomycin resistance enzyme in response to antibiotic pressure.

摘要

未标记

革兰氏阳性菌中的万古霉素耐药性是由于肽聚糖前体的D-丙氨酰-D-丙氨酸靶标被D-丙氨酰-D-乳酸或D-丙氨酰-D-丝氨酸(D-Ala-D-Ser)取代,万古霉素对其结合亲和力较低。VanT是通过将L-丝氨酸转化为D-丝氨酸来产生以D-Ala-D-Ser结尾的前体所需的蛋白质之一。VanT由两个结构域组成,一个N端膜结合结构域,可能参与L-丝氨酸摄取,以及一个C端细胞质催化结构域,与细菌丙氨酸消旋酶相关。为深入了解VanT的分子功能,测定了来自VanG型耐药粪肠球菌BM4518的VanTG催化结构域的晶体结构。该结构与III型磷酸吡哆醛(PLP)依赖性丙氨酸消旋酶具有显著相似性,后者对肽聚糖合成至关重要。VanTG与丙氨酸消旋酶之间的比较结构分析以及定点诱变确定了围绕Asn696的三个特定活性位点,这些位点负责L-氨基酸特异性。该分析还表明,VanT消旋酶是从常规丙氨酸消旋酶进化而来,在保留对丙氨酸选择性的同时,对丝氨酸获得了额外的选择性。VanTG对L-丝氨酸的相对催化效率比对L-丙氨酸低4倍,这意味着该酶依赖其膜结合结构域进行L-丝氨酸转运,以提高d-丝氨酸的总体产生速率。这些发现说明了万古霉素压力如何选择使一种管家酶分子适应双功能酶,以实现肽聚糖重塑,这是在抗生素耐药细菌中越来越常见的一种策略。

重要性

万古霉素是对抗革兰氏阳性抗生素耐药病原体的最后手段之一。然而,细菌已经进化出一种复杂的机制,将药物靶标,即细胞壁合成中以D-丙氨酸结尾的前体,重塑为以D-乳酸或D-丝氨酸结尾的前体,万古霉素对其亲和力较低。D-丝氨酸由VanT丝氨酸消旋酶合成,该酶具有两个不同寻常的特征:(i)它是在细菌中鉴定出的少数丝氨酸消旋酶之一,(ii)它包含一个参与L-丝氨酸摄取的膜结合结构域。VanTG催化结构域的结构与丙氨酸消旋酶高度相似,我们确定了三个负责L-丝氨酸特异性的特定活性位点取代。这些数据为VanT进化为协调转运和消旋作用的双功能酶提供了分子基础。我们的发现还说明了必需的丙氨酸消旋酶如何响应抗生素压力进化为万古霉素耐药酶。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验