Suppr超能文献

在生物液体介质中生成可扩展的金属高纵横比纳米复合材料。

Generation of Scalable, Metallic High-Aspect Ratio Nanocomposites in a Biological Liquid Medium.

作者信息

Cotton Kelly Kinsey, Wasserman Jessica R, Deodhar Sneha, Huckaby Justin, DeCoster Mark A

机构信息

Biophysics Department, Centenary College of Louisiana.

Department of Chemistry, Louisiana Tech University.

出版信息

J Vis Exp. 2015 Jul 8(101):e52901. doi: 10.3791/52901.

Abstract

The goal of this protocol is to describe the synthesis of two novel biocomposites with high-aspect ratio structures. The biocomposites consist of copper and cystine, with either copper nanoparticles (CNPs) or copper sulfate contributing the metallic component. Synthesis is carried out in liquid under biological conditions (37 °C) and the self-assembled composites form after 24 hr. Once formed, these composites are highly stable in both liquid media and in a dried form. The composites scale from the nano- to micro- range in length, and from a few microns to 25 nm in diameter. Field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (EDX) demonstrated that sulfur was present in the NP-derived linear structures, while it was absent from the starting CNP material, thus confirming cystine as the source of sulfur in the final nanocomposites. During synthesis of these linear nano- and micro-composites, a diverse range of lengths of structures is formed in the synthesis vessel. Sonication of the liquid mixture after synthesis was demonstrated to assist in controlling average size of the structures by diminishing the average length with increased time of sonication. Since the formed structures are highly stable, do not agglomerate, and are formed in liquid phase, centrifugation may also be used to assist in concentrating and segregating formed composites.

摘要

本实验方案的目的是描述两种具有高纵横比结构的新型生物复合材料的合成方法。这些生物复合材料由铜和胱氨酸组成,金属成分由铜纳米颗粒(CNPs)或硫酸铜提供。合成在生物条件(37°C)下的液体中进行,24小时后形成自组装复合材料。一旦形成,这些复合材料在液体介质和干燥形式下都非常稳定。复合材料的长度范围从纳米到微米,直径从几微米到25纳米。场发射扫描电子显微镜结合能量色散X射线光谱(EDX)表明,硫存在于NP衍生的线性结构中,而起始CNP材料中不存在硫,从而证实胱氨酸是最终纳米复合材料中硫的来源。在这些线性纳米和微米复合材料的合成过程中,合成容器中形成了各种长度的结构。合成后对液体混合物进行超声处理,结果表明,随着超声处理时间的增加,通过减小平均长度,有助于控制结构的平均尺寸。由于形成的结构高度稳定、不团聚且在液相中形成,因此也可以使用离心法来浓缩和分离形成的复合材料。

相似文献

2
Synthesis and characterization of bovine serum albumin-copper nanocomposites for antibacterial applications.
Colloids Surf B Biointerfaces. 2013 Aug 1;108:134-41. doi: 10.1016/j.colsurfb.2013.02.031. Epub 2013 Mar 7.
3
Fabrication and size-dependent optical properties of copper/lophine core/shell nanocomposites.
J Nanosci Nanotechnol. 2007 Mar;7(3):1021-7. doi: 10.1166/jnn.2007.215.
4
Integration of a Copper-Containing Biohybrid (CuHARS) with Cellulose for Subsequent Degradation and Biomedical Control.
Int J Environ Res Public Health. 2018 Apr 25;15(5):844. doi: 10.3390/ijerph15050844.
6
A kinetic study on the formation of poly(4 aminodiphenylamine)/copper nanocomposite using UV-visible spectroscopy.
Spectrochim Acta A Mol Biomol Spectrosc. 2013 Dec;116:321-30. doi: 10.1016/j.saa.2013.06.064. Epub 2013 Jul 30.
8
Cupric ion release controlled by copper/low-density polyethylene nanocomposite in simulated uterine solution.
J Biomed Mater Res B Appl Biomater. 2007 Jan;80(1):220-5. doi: 10.1002/jbm.b.30587.
9
Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine.
Int J Biol Macromol. 2016 Dec;93(Pt B):1465-1478. doi: 10.1016/j.ijbiomac.2016.04.030. Epub 2016 Apr 13.
10
Synthesis of Ag-liposome nano composites.
J Liposome Res. 2010 Dec;20(4):323-9. doi: 10.3109/08982100903544177. Epub 2010 Feb 4.

引用本文的文献

1
Copper-Cystine Biohybrid-Embedded Nanofiber Aerogels Show Antibacterial and Angiogenic Properties.
ACS Omega. 2024 Feb 16;9(8):9765-9781. doi: 10.1021/acsomega.3c10012. eCollection 2024 Feb 27.
2
Evolving approaches in glioma treatment: harnessing the potential of copper metabolism modulation.
RSC Adv. 2023 Nov 21;13(48):34045-34056. doi: 10.1039/d3ra06434d. eCollection 2023 Nov 16.
4
Self-Assembled Metal-Organic Biohybrids (MOBs) Using Copper and Silver for Cell Studies.
Nanomaterials (Basel). 2019 Sep 8;9(9):1282. doi: 10.3390/nano9091282.
5
Integration of a Copper-Containing Biohybrid (CuHARS) with Cellulose for Subsequent Degradation and Biomedical Control.
Int J Environ Res Public Health. 2018 Apr 25;15(5):844. doi: 10.3390/ijerph15050844.

本文引用的文献

1
Engineered coiled-coil protein microfibers.
Biomacromolecules. 2014 Oct 13;15(10):3503-10. doi: 10.1021/bm5004948. Epub 2014 Oct 2.
2
Layer-by-layer nanoencapsulation of camptothecin with improved activity.
Int J Pharm. 2014 Apr 25;465(1-2):218-27. doi: 10.1016/j.ijpharm.2014.01.041. Epub 2014 Feb 6.
3
Suppression of the coffee-ring effect by shape-dependent capillary interactions.
Nature. 2011 Aug 17;476(7360):308-11. doi: 10.1038/nature10344.
4
Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics.
Nanotechnology. 2008 Oct 15;19(41):415604. doi: 10.1088/0957-4484/19/41/415604. Epub 2008 Sep 4.
5
Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS).
Langmuir. 2011 Jan 18;27(2):843-50. doi: 10.1021/la104278m. Epub 2010 Dec 20.
6
Iron-clad fibers: a metal-based biological strategy for hard flexible coatings.
Science. 2010 Apr 9;328(5975):216-20. doi: 10.1126/science.1181044. Epub 2010 Mar 4.
7
Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes.
Chem Res Toxicol. 2008 Sep;21(9):1726-32. doi: 10.1021/tx800064j. Epub 2008 Aug 19.
9
Mesoscale organization of CuO nanoribbons: formation of "dandelions".
J Am Chem Soc. 2004 Jul 7;126(26):8124-5. doi: 10.1021/ja048195o.
10
Essentiality of copper in humans.
Am J Clin Nutr. 1998 May;67(5 Suppl):952S-959S. doi: 10.1093/ajcn/67.5.952S.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验