Clark Kevin B
Research and Development Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Extreme Science and Engineering Discovery Environment (XSEDE), National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Biological Collaborative Research Environment (BioCoRE), Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Prog Biophys Mol Biol. 2015 Nov;119(2):183-93. doi: 10.1016/j.pbiomolbio.2015.08.018. Epub 2015 Aug 13.
A key feature for obtaining solutions to difficult problems, insight is oftentimes vaguely regarded as a special discontinuous intellectual process and/or a cognitive restructuring of problem representation or goal approach. However, this nearly century-old state of art devised by the Gestalt tradition to explain the non-analytical or non-trial-and-error, goal-seeking aptitude of primate mentality tends to neglect problem-solving capabilities of lower animal phyla, Kingdoms other than Animalia, and advancing smart computational technologies built from biological, artificial, and composite media. Attempting to provide an inclusive, precise definition of insight, two major criteria of insight, discontinuous processing and problem restructuring, are here reframed using terminology and statistical mechanical properties of computational complexity classes. Discontinuous processing becomes abrupt state transitions in algorithmic/heuristic outcomes or in types of algorithms/heuristics executed by agents using classical and/or quantum computational models. And problem restructuring becomes combinatorial reorganization of resources, problem-type substitution, and/or exchange of computational models. With insight bounded by computational complexity, humans, ciliated protozoa, and complex technological networks, for example, show insight when restructuring time requirements, combinatorial complexity, and problem type to solve polynomial and nondeterministic polynomial decision problems. Similar effects are expected from other problem types, supporting the idea that insight might be an epiphenomenon of analytical problem solving and consequently a larger information processing framework. Thus, this computational complexity definition of insight improves the power, external and internal validity, and reliability of operational parameters with which to classify, investigate, and produce the phenomenon for computational agents ranging from microbes to man-made devices.
洞察力是解决难题的一个关键特征,人们常常模糊地将其视为一种特殊的非连续智力过程和/或问题表征或目标求解方式的认知重构。然而,格式塔传统提出的这种近百年的理论,旨在解释灵长类思维的非分析性或非试错性的目标导向能力,却往往忽视了低等动物门类、动物界以外的其他生物界以及基于生物、人工和复合介质构建的先进智能计算技术的问题解决能力。为了尝试给出一个全面、精确的洞察力定义,本文使用计算复杂度类别的术语和统计力学性质,对洞察力的两个主要标准——非连续处理和问题重构进行了重新阐释。非连续处理在算法/启发式结果中,或在使用经典和/或量子计算模型的智能体执行的算法/启发式类型中,变成了突然的状态转变。而问题重构则变成了资源的组合重组、问题类型替换和/或计算模型的交换。由于洞察力受计算复杂度的限制,例如,人类、纤毛原生动物和复杂技术网络在重构时间要求、组合复杂度和问题类型以解决多项式和非确定性多项式决策问题时,就表现出了洞察力。预计其他问题类型也会有类似效果,这支持了洞察力可能是分析性问题解决的一种附带现象,因而也是一个更大的信息处理框架的观点。因此,这种基于计算复杂度的洞察力定义提高了操作参数的效力、外部和内部效度以及可靠性,这些参数可用于对从微生物到人造设备的计算智能体的洞察力现象进行分类、研究和产生。