Suppr超能文献

CMPCs 在单向约束和无应力 3D 水凝胶中的行为。

Behavior of CMPCs in unidirectional constrained and stress-free 3D hydrogels.

机构信息

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.

出版信息

J Mol Cell Cardiol. 2015 Oct;87:79-91. doi: 10.1016/j.yjmcc.2015.08.010. Epub 2015 Aug 14.

Abstract

Cardiomyocyte progenitor cells (CMPCs) are a candidate cell source for cardiac regenerative therapy. However, like other stem cells, after transplantation in the heart, cell retention and differentiation capacity of the CMPCs are low. Combining cells with biomaterials might overcome this problem. By serving as a (temporal) environment, the biomaterial can retain the cells and provide signals that enhance survival, proliferation and differentiation of the cells. To gain more insight into the effect that the encapsulation of CMPCs in a biomaterial has on their behavior, we cultured CMPCs in unidirectional constrained and stress-free collagen/Matrigel hydrogels. CMPCs cultured in 3D hydrogels stay viable and keep their cardiomyogenic profile independent of the application of strain. Moreover, the increased expression of Nkx2.5, myocardin and cTnT in 3D hydrogels compared to 2D cultures, suggests enhanced cardiomyogenic differentiation capacity of cells in 3D. Furthermore, increased expression of collagen I, collagen III, elastin and fibronectin and of the matrix remodeling enzymes MMP-1, MMP-2, MMP-9, and TIMP-1 and TIMP-2 in the 3D hydrogels is indicative of an enhanced matrix remodeling capacity of CMPCs in a 3D environment, independent of the application of strain. Interestingly, the additional application of static strain to the 3D hydrogels, as imposed by hydrogel constrainment, stabilized CMPC viability and proliferation, resulted in enhanced cardiac marker protein expression and appeared crucial for cellular organization and morphology. More specifically, CMPCs cultured in 3D collagen/Matrigel constrained hydrogels became readily mechanosensitive, had a rod-shaped morphology, and responded to the applied strain by orienting in the direction of the constraint. Overall, our data demonstrate the applicability of CMPCs in a 3D environment since encapsulation of CMPCs may stabilize survival and proliferation, can enhance the differentiation and remodeling capacity of the cells, and could induce cellular re-organization, which all may contribute to an improved efficiency of cardiac stem cell therapy.

摘要

心肌细胞祖细胞 (CMPC) 是心脏再生治疗的候选细胞来源。然而,与其他干细胞一样,在心脏内移植后,CMPC 的细胞保留和分化能力较低。将细胞与生物材料结合可能会克服这个问题。通过作为(暂时)环境,生物材料可以保留细胞并提供增强细胞存活、增殖和分化的信号。为了更深入地了解将 CMPC 封装在生物材料中对其行为的影响,我们在单向约束和无应力的胶原/Matrigel 水凝胶中培养 CMPC。在 3D 水凝胶中培养的 CMPC 保持存活并保持其心肌生成特征,而与施加应变无关。此外,与 2D 培养相比,3D 水凝胶中 Nkx2.5、心肌调节蛋白和 cTnT 的表达增加表明细胞在 3D 中的心肌生成分化能力增强。此外,3D 水凝胶中胶原 I、胶原 III、弹性蛋白和纤维连接蛋白以及基质重塑酶 MMP-1、MMP-2、MMP-9 和 TIMP-1 和 TIMP-2 的表达增加表明 CMPC 在 3D 环境中的基质重塑能力增强,而与施加应变无关。有趣的是,通过水凝胶约束对 3D 水凝胶施加额外的静态应变,如施加静态应变,稳定了 CMPC 的活力和增殖,导致心脏标志物蛋白表达增强,并且对细胞组织和形态至关重要。更具体地说,在 3D 胶原/Matrigel 约束水凝胶中培养的 CMPC 变得容易感受到机械刺激,具有杆状形态,并通过沿约束方向定向对施加的应变做出反应。总体而言,我们的数据证明了 CMPC 在 3D 环境中的适用性,因为 CMPC 的封装可以稳定细胞的存活和增殖,增强细胞的分化和重塑能力,并可能诱导细胞重新组织,所有这些都可能有助于提高心脏干细胞治疗的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验