Suppr超能文献

利用高分辨率扫描透射电子显微镜对(镓铟)砷量子阱界面粗糙度进行定量表征。

Quantitative characterization of the interface roughness of (GaIn)As quantum wells by high resolution STEM.

作者信息

Han H, Beyer A, Jandieri K, Gries K I, Duschek L, Stolz W, Volz K

机构信息

Philipps-Universität Marburg, Faculty of Physics and Materials Science Center, Hans Meerwein Str., 35032 Marburg, Germany.

出版信息

Micron. 2015 Dec;79:1-7. doi: 10.1016/j.micron.2015.07.003. Epub 2015 Jul 26.

Abstract

The physical properties of semiconductor quantum wells (QW), like (GaIn)As/GaAs, are significantly influenced by the interface morphology. In the present work, high angle annular dark field imaging in (scanning) transmission electron microscopy ((S)TEM), in combination with contrast simulation, is used to address this question at atomic resolution. The (GaIn)As QWs were grown with metal organic vapor phase epitaxy on GaAs (001) substrates under different, precisely controlled conditions. In order to be able to compare different samples, a carefully applied method to gain reliable results from high resolution STEM micrographs was used. The thickness gradient of the TEM samples, caused by sample preparation, was compensated by the intensity of group V atomic columns, where no alloying takes place. After that, the In concentration map was plotted for the investigated regions based on the intensity of the group III atomic columns. The composition maps show that the Indium distribution across the quantum well is not homogeneous. The growth temperature of the QW can greatly influence the composition fluctuation and the interface morphology, with higher growth temperature resulting in larger composition fluctuations in the QWs and slightly wider interfaces, i.e. larger In-segregation. Growth interruptions are shown to significantly homogenize the elemental depth profile especially along the (GaIn)As/GaAs interface and hence have a positive effect on interface smoothness.

摘要

半导体量子阱(QW),如(GaIn)As/GaAs的物理性质,会受到界面形态的显著影响。在本工作中,(扫描)透射电子显微镜((S)TEM)中的高角度环形暗场成像结合对比度模拟,用于在原子分辨率下解决这个问题。(GaIn)As量子阱是在不同的、精确控制的条件下,通过金属有机气相外延在GaAs(001)衬底上生长的。为了能够比较不同的样品,使用了一种精心应用的方法,以便从高分辨率STEM显微照片中获得可靠的结果。由样品制备引起的TEM样品的厚度梯度,通过未发生合金化的V族原子柱的强度进行补偿。之后,根据III族原子柱的强度,绘制出所研究区域的In浓度图。成分图表明,量子阱中铟的分布不均匀。量子阱的生长温度会极大地影响成分波动和界面形态,生长温度越高,量子阱中的成分波动越大,界面也会稍宽一些,即In偏析更大。结果表明,生长中断能显著使元素深度分布均匀化,尤其是沿(GaIn)As/GaAs界面,因此对界面平滑度有积极影响。

相似文献

1
Quantitative characterization of the interface roughness of (GaIn)As quantum wells by high resolution STEM.
Micron. 2015 Dec;79:1-7. doi: 10.1016/j.micron.2015.07.003. Epub 2015 Jul 26.
2
The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem.
Ultramicroscopy. 2017 May;176:93-98. doi: 10.1016/j.ultramic.2017.01.019. Epub 2017 Feb 3.
3
Experimental evaluation of interfaces using atomic-resolution high angle annular dark field (HAADF) imaging.
Ultramicroscopy. 2012 Mar;114:11-9. doi: 10.1016/j.ultramic.2011.10.015. Epub 2011 Nov 4.
5
Direct investigation of (sub-) surface preparation artifacts in GaAs based materials by FIB sectioning.
Ultramicroscopy. 2016 Apr;163:19-30. doi: 10.1016/j.ultramic.2016.01.001. Epub 2016 Jan 27.
6
Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy.
Ultramicroscopy. 2009 Sep;109(10):1236-44. doi: 10.1016/j.ultramic.2009.05.010. Epub 2009 May 27.
7
8
Simultaneous quantification of indium and nitrogen concentration in InGaNAs using HAADF-STEM.
Microsc Microanal. 2014 Dec;20(6):1740-52. doi: 10.1017/S1431927614013051. Epub 2014 Sep 30.
9
Influence of spatial and temporal coherences on atomic resolution high angle annular dark field imaging.
Ultramicroscopy. 2016 Oct;169:1-10. doi: 10.1016/j.ultramic.2016.06.006. Epub 2016 Jun 21.
10
Atomic structure of 'W'-type quantum well heterostructures investigated by aberration-corrected STEM.
J Microsc. 2017 Dec;268(3):259-268. doi: 10.1111/jmi.12647. Epub 2017 Sep 27.

引用本文的文献

1
Towards 3D characterisation of site-controlled InGaAs pyramidal QDs at the nanoscale.
J Mater Sci. 2022;57(34):16383-16396. doi: 10.1007/s10853-022-07654-2. Epub 2022 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验