Suppr超能文献

通过关联光子与电子激发来理解金属纳米结构中的等离子体特性

Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations.

作者信息

Iberi Vighter, Mirsaleh-Kohan Nasrin, Camden Jon P

机构信息

Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States.

出版信息

J Phys Chem Lett. 2013 Apr 4;4(7):1070-8. doi: 10.1021/jz302140h. Epub 2013 Mar 18.

Abstract

A large number of optical phenomena rely on the excitation of localized surface plasmon resonances (LSPR) in metallic nanostructures. Electron-energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) has emerged as a technique capable of mapping plasmonic properties on length scales 100 times smaller than optical wavelengths. While this technique is promising, the connection between electron-driven plasmons, encountered in EELS, and photon-driven plasmons, encountered in plasmonic devices, is not well understood. This Perspective highlights some of the contributions that have been made in correlating optical scattering and STEM/EELS from the exact same nanostructures. The experimental observations are further elucidated by comparison with theoretical calculations obtained from the electron-driven discrete dipole approximation, which provides a method to calculate EEL spectra for nanoparticles of arbitrary shape. Applications of plasmon mapping to the electromagnetic hot-spots encountered in single-molecule surface-enhanced Raman scattering and electron beam induced damage in silver nanocubes are discussed. It is anticipated that the complementarity of both techniques will address issues in fundamental and applied plasmonics going forward.

摘要

大量光学现象依赖于金属纳米结构中局域表面等离子体共振(LSPR)的激发。扫描透射电子显微镜(STEM)中的电子能量损失谱(EELS)已成为一种能够在比光学波长小100倍的长度尺度上绘制等离子体特性的技术。虽然这项技术很有前景,但在EELS中遇到的电子驱动等离子体与在等离子体器件中遇到的光子驱动等离子体之间的联系尚未得到很好的理解。这篇综述强调了在关联来自完全相同纳米结构的光学散射和STEM/EELS方面所取得的一些贡献。通过与从电子驱动的离散偶极近似获得的理论计算结果进行比较,进一步阐明了实验观察结果,该近似提供了一种计算任意形状纳米颗粒EEL光谱的方法。讨论了等离子体映射在单分子表面增强拉曼散射中遇到的电磁热点以及银纳米立方体中的电子束诱导损伤方面的应用。预计这两种技术的互补性将解决未来基础和应用等离子体学中的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验