Suppr超能文献

为何叶绿体和线粒体保留自身的基因组和遗传系统:基因表达氧化还原调控的共位现象。

Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression.

作者信息

Allen John F

机构信息

Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom

出版信息

Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10231-8. doi: 10.1073/pnas.1500012112. Epub 2015 May 18.

Abstract

Chloroplasts and mitochondria are subcellular bioenergetic organelles with their own genomes and genetic systems. DNA replication and transmission to daughter organelles produces cytoplasmic inheritance of characters associated with primary events in photosynthesis and respiration. The prokaryotic ancestors of chloroplasts and mitochondria were endosymbionts whose genes became copied to the genomes of their cellular hosts. These copies gave rise to nuclear chromosomal genes that encode cytosolic proteins and precursor proteins that are synthesized in the cytosol for import into the organelle into which the endosymbiont evolved. What accounts for the retention of genes for the complete synthesis within chloroplasts and mitochondria of a tiny minority of their protein subunits? One hypothesis is that expression of genes for protein subunits of energy-transducing enzymes must respond to physical environmental change by means of a direct and unconditional regulatory control--control exerted by change in the redox state of the corresponding gene product. This hypothesis proposes that, to preserve function, an entire redox regulatory system has to be retained within its original membrane-bound compartment. Colocation of gene and gene product for redox regulation of gene expression (CoRR) is a hypothesis in agreement with the results of a variety of experiments designed to test it and which seem to have no other satisfactory explanation. Here, I review evidence relating to CoRR and discuss its development, conclusions, and implications. This overview also identifies predictions concerning the results of experiments that may yet prove the hypothesis to be incorrect.

摘要

叶绿体和线粒体是具有自身基因组和遗传系统的亚细胞生物能量细胞器。DNA复制以及向子细胞器的传递产生了与光合作用和呼吸作用中的主要事件相关的性状的细胞质遗传。叶绿体和线粒体的原核祖先曾经是内共生体,其基因后来被复制到它们细胞宿主的基因组中。这些复制产生了核染色体基因,这些基因编码在细胞质中合成的胞质蛋白和前体蛋白,以便导入内共生体进化而来的细胞器中。是什么原因导致叶绿体和线粒体中一小部分蛋白质亚基的完整合成基因得以保留呢?一种假说认为,能量转换酶的蛋白质亚基基因的表达必须通过直接且无条件的调控控制来响应物理环境变化——这种控制是由相应基因产物的氧化还原状态变化施加的。该假说提出,为了保持功能,整个氧化还原调节系统必须保留在其原始的膜结合区室中。基因与基因产物共定位以进行基因表达的氧化还原调节(CoRR)是一种假说,它与旨在检验它的各种实验结果相符,而且似乎没有其他令人满意的解释。在这里,我回顾与CoRR相关的证据,并讨论其发展、结论及影响。本综述还确定了关于实验结果的预测,这些实验结果可能会证明该假说是错误的。

相似文献

1
Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression.
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10231-8. doi: 10.1073/pnas.1500012112. Epub 2015 May 18.
2
The function of genomes in bioenergetic organelles.
Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):19-37; discussion 37-8. doi: 10.1098/rstb.2002.1191.
3
The CoRR hypothesis for genes in organelles.
J Theor Biol. 2017 Dec 7;434:50-57. doi: 10.1016/j.jtbi.2017.04.008. Epub 2017 Apr 11.
4
Redox regulation and modification of proteins controlling chloroplast gene expression.
Antioxid Redox Signal. 2005 May-Jun;7(5-6):607-18. doi: 10.1089/ars.2005.7.607.
6
Balancing the two photosystems: photosynthetic electron transfer governs transcription of reaction centre genes in chloroplasts.
Philos Trans R Soc Lond B Biol Sci. 2000 Oct 29;355(1402):1351-9. doi: 10.1098/rstb.2000.0697.
8
Organelle transcriptomes: products of a deconstructed genome.
Curr Opin Microbiol. 2013 Oct;16(5):652-8. doi: 10.1016/j.mib.2013.07.011. Epub 2013 Aug 7.
9
Tuning a ménage à trois: co-evolution and co-adaptation of nuclear and organellar genomes in plants.
Bioessays. 2013 Apr;35(4):354-65. doi: 10.1002/bies.201200137. Epub 2013 Jan 30.
10
Energy transduction anchors genes in organelles.
Bioessays. 2005 Apr;27(4):426-35. doi: 10.1002/bies.20194.

引用本文的文献

4
Living photosynthetic micro/nano-platforms: Engineering unicellular algae for biomedical applications.
Bioact Mater. 2025 May 27;51:575-597. doi: 10.1016/j.bioactmat.2025.05.023. eCollection 2025 Sep.
6
Death-Associated Protein 3 Triggers Intrinsic Apoptosis via Miro1 Upon Inducing Intracellular Calcium Changes.
MedComm (2020). 2025 May 10;6(5):e70214. doi: 10.1002/mco2.70214. eCollection 2025 May.
8
The six whole mitochondrial genomes for the species: features, evolution and phylogeny.
IMA Fungus. 2025 Feb 28;16:e140572. doi: 10.3897/imafungus.16.140572. eCollection 2025.

本文引用的文献

1
Redox conditions specify the proteins synthesised by isolated chloroplasts and mitochondria.
Redox Rep. 1995 Feb;1(2):119-23. doi: 10.1080/13510002.1995.11746969.
2
Compartmentalization of the protein repair machinery in photosynthetic membranes.
Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15839-44. doi: 10.1073/pnas.1413739111. Epub 2014 Oct 20.
3
Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle.
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11407-12. doi: 10.1073/pnas.1405222111. Epub 2014 Jul 21.
4
Inhibition of the electron transport strongly affects transcription and transcript levels in Arabidopsis mitochondria.
Mitochondrion. 2014 Nov;19 Pt B:222-30. doi: 10.1016/j.mito.2014.03.011. Epub 2014 Mar 31.
5
DNA topoisomerases in mtDNA maintenance and ageing.
Exp Gerontol. 2014 Aug;56:135-41. doi: 10.1016/j.exger.2014.01.009. Epub 2014 Jan 15.
6
Redox control of gene expression and the function of chloroplast genomes - an hypothesis.
Photosynth Res. 1993 May;36(2):95-102. doi: 10.1007/BF00016274.
8
Negative regulation of mitochondrial transcription by mitochondrial topoisomerase I.
Nucleic Acids Res. 2013 Nov;41(21):9848-57. doi: 10.1093/nar/gkt768. Epub 2013 Aug 27.
9
Evolutionary rewiring: a modified prokaryotic gene-regulatory pathway in chloroplasts.
Philos Trans R Soc Lond B Biol Sci. 2013 Jun 10;368(1622):20120260. doi: 10.1098/rstb.2012.0260. Print 2013 Jul 19.
10
Energy, genes and evolution: introduction to an evolutionary synthesis.
Philos Trans R Soc Lond B Biol Sci. 2013 Jun 10;368(1622):20120253. doi: 10.1098/rstb.2012.0253. Print 2013 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验