Mollica Luca, Baias Maria, Lewandowski Józef R, Wylie Benjamin J, Sperling Lindsay J, Rienstra Chad M, Emsley Lyndon, Blackledge Martin
†Protein Dynamics and Flexibility, Institut de Biologie Structurale, CEA, CNRS, UJF-Grenoble 1, 41 Rue Jules Horowitz, Grenoble 38027, France.
‡CNRS/ENS-Lyon/UCB-Lyon 1, Centre de RMN à Très Hauts Champs, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France.
J Phys Chem Lett. 2012 Dec 6;3(23):3657-62. doi: 10.1021/jz3016233. Epub 2012 Nov 27.
Solid-state NMR can provide atomic-resolution information about protein motions occurring on a vast range of time scales under similar conditions to those of X-ray diffraction studies and therefore offers a highly complementary approach to characterizing the dynamic fluctuations occurring in the crystal. We compare experimentally determined dynamic parameters, spin relaxation, chemical shifts, and dipolar couplings, to values calculated from a 200 ns MD simulation of protein GB1 in its crystalline form, providing insight into the nature of structural dynamics occurring within the crystalline lattice. This simulation allows us to test the accuracy of commonly applied procedures for the interpretation of experimental solid-state relaxation data in terms of dynamic modes and time scales. We discover that the potential complexity of relaxation-active motion can lead to significant under- or overestimation of dynamic amplitudes if different components are not taken into consideration.
固态核磁共振(NMR)能够在与X射线衍射研究相似的条件下,提供关于在广泛时间尺度上发生的蛋白质运动的原子分辨率信息,因此为表征晶体中发生的动态波动提供了一种高度互补的方法。我们将实验测定的动态参数、自旋弛豫、化学位移和偶极耦合与从蛋白质GB1晶体形式的200纳秒分子动力学(MD)模拟计算得到的值进行比较,从而深入了解晶格内发生的结构动力学的本质。该模拟使我们能够测试常用程序在根据动态模式和时间尺度解释实验固态弛豫数据方面的准确性。我们发现,如果不考虑不同的组分,弛豫活性运动的潜在复杂性可能导致动态幅度的显著低估或高估。