Suppr超能文献

聚己内酯纳米纤维中纤维素纳米晶的原位生成:对结晶度、机械强度、生物相容性和仿生矿化的影响。

In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.

机构信息

Department of Bionanosystem Engineering, Graduate School, Chonbuk National University , Jeonju 561-756, Republic of Korea.

Department of Convergence Technology Engineering, College of engineering, Chonbuk National University , Jeonju 561-756, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2015 Sep 9;7(35):19672-83. doi: 10.1021/acsami.5b04682. Epub 2015 Aug 26.

Abstract

Post-electrospinning treatment is a facile process to improve the properties of electrospun nanofibers for various applications. This technique is commonly used when direct electrospinning is not a suitable option to fabricate a nonwoven membrane of the desired polymer in a preferred morphology. In this study, a representative natural-synthetic hybrid of cellulose acetate (CA) and polycaprolactone (PCL) in different ratios was fabricated using an electrospinning process, and CA in the hybrid fiber was transformed into cellulose (CL) by post-electrospinning treatment via alkaline saponification. Scanning electron microscopy was employed to study the effects of polymer composition and subsequent saponification on the morphology of the nanofibers. Increasing the PCL content in the PCL/CA blend solution caused a gradual decrease in viscosity, resulting in smoother and more uniform fibers. The saponification of fibers lead to pronounced changes in the physicochemical properties. The crystallinity of the PCL in the composite fiber was varied according to the composition of the component polymers. The water contact angle was considerably decreased (from 124° to less than 20°), and the mechanical properties were greatly enhanced (Young's Modulus was improved by ≈20-30 fold, tensile strength by 3-4 fold, and tensile stress by ≈2-4 fold) compared to those of PCL and PCL/CA membranes. Regeneration of cellulose chains in the nanofibers increased the number of hydroxyl groups, which increased the hydrogen bonding, thereby improving the mechanical properties and wettability of the composite nanofibers. The improved wettability and presence of surface functional groups enhanced the ability to nucleate bioactive calcium phosphate crystals throughout the matrix when exposed to a simulated body fluid solution. Experimental results of cell viability assay, confocal microscopy, and scanning electron microscopy imaging showed that the fabricated nanofibrous membranes have excellent ability for MC3T3-E1 cell proliferation and growth. Given the versatility and widespread use of cellulose-synthetic hybrid systems in the construction of tissue-engineered scaffolds, this work provides a novel strategy to fabricate the biopolymer-based materials for applications in tissue engineering and regenerative medicine.

摘要

后静电纺丝处理是一种改善静电纺纳米纤维性能的简便方法,可用于各种应用。当直接静电纺丝不是制造所需聚合物的非织造膜的合适选择时,通常使用该技术,以所需形态制造。在这项研究中,使用静电纺丝工艺制造了不同比例的醋酸纤维素(CA)和聚己内酯(PCL)的代表性天然-合成混合体,并且通过后静电纺丝处理通过碱性皂化将混合纤维中的 CA 转化为纤维素(CL)。扫描电子显微镜用于研究聚合物组成和随后的皂化对纳米纤维形态的影响。增加 PCL/CA 共混溶液中 PCL 的含量会导致粘度逐渐降低,从而使纤维更光滑、更均匀。纤维的皂化导致物理化学性质发生明显变化。复合纤维中 PCL 的结晶度根据组成聚合物的组成而变化。水接触角大大降低(从 124°降低到小于 20°),机械性能大大提高(杨氏模量提高了约 20-30 倍,拉伸强度提高了 3-4 倍,拉伸应力提高了约 2-4 倍)与 PCL 和 PCL/CA 膜相比。纳米纤维中纤维素链的再生增加了羟基的数量,增加了氢键,从而提高了复合纳米纤维的机械性能和润湿性。润湿性的提高和表面官能团的存在增强了在暴露于模拟体液溶液时在整个基质中成核生物活性磷酸钙晶体的能力。细胞活力测定、共聚焦显微镜和扫描电子显微镜成像的实验结果表明,所制造的纳米纤维膜具有促进 MC3T3-E1 细胞增殖和生长的优异能力。鉴于纤维素-合成混合系统在组织工程支架构建中的多功能性和广泛应用,这项工作为制造用于组织工程和再生医学应用的生物聚合物基材料提供了一种新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验