Suppr超能文献

尼帕病毒感染的人小气道上皮细胞中的氧化应激

Oxidative stress in Nipah virus-infected human small airway epithelial cells.

作者信息

Escaffre Olivier, Halliday Hailey, Borisevich Viktoriya, Casola Antonella, Rockx Barry

机构信息

Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.

Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.

出版信息

J Gen Virol. 2015 Oct;96(10):2961-2970. doi: 10.1099/jgv.0.000243. Epub 2015 Jul 14.

Abstract

Nipah virus (NiV) is a zoonotic emerging pathogen that can cause severe and often fatal respiratory disease in humans. The pathogenesis of NiV infection of the human respiratory tract remains unknown. Reactive oxygen species (ROS) produced by airway epithelial cells in response to viral infections contribute to lung injury by inducing inflammation and oxidative stress; however, the role of ROS in NiV-induced respiratory disease is unknown. To investigate whether NiV induces oxidative stress in human respiratory epithelial cells, we used oxidative stress markers and monitored antioxidant gene expression. We also used ROS scavengers to assess their role in immune response modulation. Oxidative stress was confirmed in infected cells and correlated with the reduction in antioxidant enzyme gene expression. Infected cells treated by ROS scavengers resulted in a significant decrease of the (F2)-8-isoprostane marker, inflammatory responses and virus replication. In conclusion, ROS are induced during NiV infection in human respiratory epithelium and contribute to the inflammatory response. Understanding how oxidative stress contributes to NiV pathogenesis is crucial for therapeutic development.

摘要

尼帕病毒(NiV)是一种人畜共患的新兴病原体,可导致人类严重且往往致命的呼吸道疾病。NiV感染人类呼吸道的发病机制尚不清楚。气道上皮细胞在病毒感染时产生的活性氧(ROS)通过诱导炎症和氧化应激导致肺损伤;然而,ROS在NiV诱导的呼吸道疾病中的作用尚不清楚。为了研究NiV是否会在人呼吸道上皮细胞中诱导氧化应激,我们使用了氧化应激标志物并监测抗氧化基因表达。我们还使用ROS清除剂来评估它们在免疫反应调节中的作用。在感染细胞中证实了氧化应激,并且与抗氧化酶基因表达的降低相关。用ROS清除剂处理感染细胞导致(F2)-8-异前列腺素标志物、炎症反应和病毒复制显著减少。总之,在人呼吸道上皮细胞感染NiV期间会诱导ROS产生,并导致炎症反应。了解氧化应激如何促成NiV发病机制对于治疗开发至关重要。

相似文献

1
Oxidative stress in Nipah virus-infected human small airway epithelial cells.
J Gen Virol. 2015 Oct;96(10):2961-2970. doi: 10.1099/jgv.0.000243. Epub 2015 Jul 14.
3
Henipavirus pathogenesis in human respiratory epithelial cells.
J Virol. 2013 Mar;87(6):3284-94. doi: 10.1128/JVI.02576-12. Epub 2013 Jan 9.
4
Characterization of Nipah virus infection in a model of human airway epithelial cells cultured at an air-liquid interface.
J Gen Virol. 2016 May;97(5):1077-1086. doi: 10.1099/jgv.0.000441. Epub 2016 Mar 1.
5
A human lung xenograft mouse model of Nipah virus infection.
PLoS Pathog. 2014 Apr 3;10(4):e1004063. doi: 10.1371/journal.ppat.1004063. eCollection 2014 Apr.
6
Species-specific and individual differences in Nipah virus replication in porcine and human airway epithelial cells.
J Gen Virol. 2016 Jul;97(7):1511-1519. doi: 10.1099/jgv.0.000483. Epub 2016 Apr 14.
8
Cytokine Induction in Nipah Virus-Infected Primary Human and Porcine Bronchial Epithelial Cells.
J Infect Dis. 2020 May 11;221(Suppl 4):S395-S400. doi: 10.1093/infdis/jiz455.
9
Pathogenesis of Hendra and Nipah virus infection in humans.
J Infect Dev Ctries. 2013 Apr 17;7(4):308-11. doi: 10.3855/jidc.3648.
10
Identifying Early Target Cells of Nipah Virus Infection in Syrian Hamsters.
PLoS Negl Trop Dis. 2016 Nov 3;10(11):e0005120. doi: 10.1371/journal.pntd.0005120. eCollection 2016 Nov.

引用本文的文献

本文引用的文献

1
Alteration of copper-zinc superoxide dismutase 1 expression by influenza A virus is correlated with virus replication.
Biochem Biophys Res Commun. 2014 Jul 18;450(1):711-6. doi: 10.1016/j.bbrc.2014.06.037. Epub 2014 Jun 16.
2
A human lung xenograft mouse model of Nipah virus infection.
PLoS Pathog. 2014 Apr 3;10(4):e1004063. doi: 10.1371/journal.ppat.1004063. eCollection 2014 Apr.
3
Henipavirus pathogenesis in human respiratory epithelial cells.
J Virol. 2013 Mar;87(6):3284-94. doi: 10.1128/JVI.02576-12. Epub 2013 Jan 9.
4
Antioxidant mimetics modulate oxidative stress and cellular signaling in airway epithelial cells infected with respiratory syncytial virus.
Am J Physiol Lung Cell Mol Physiol. 2012 Dec 1;303(11):L991-1000. doi: 10.1152/ajplung.00192.2012. Epub 2012 Sep 28.
5
Respiratory syncytial virus infection: mechanisms of redox control and novel therapeutic opportunities.
Antioxid Redox Signal. 2013 Jan 10;18(2):186-217. doi: 10.1089/ars.2011.4307. Epub 2012 Sep 7.
6
Recent progress in henipavirus research: molecular biology, genetic diversity, animal models.
Antiviral Res. 2012 Aug;95(2):135-49. doi: 10.1016/j.antiviral.2012.05.008. Epub 2012 May 27.
7
Hendra and Nipah viruses: why are they so deadly?
Curr Opin Virol. 2012 Jun;2(3):242-7. doi: 10.1016/j.coviro.2012.03.006. Epub 2012 Apr 5.
8
Major shifts in the spatio-temporal distribution of lung antioxidant enzymes during influenza pneumonia.
PLoS One. 2012;7(2):e31494. doi: 10.1371/journal.pone.0031494. Epub 2012 Feb 15.
10
Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008.
Vector Borne Zoonotic Dis. 2012 Jan;12(1):65-72. doi: 10.1089/vbz.2011.0656. Epub 2011 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验