Suppr超能文献

作为蛋白质替代疗法平台的白蛋白基因座体内基因组编辑。

In vivo genome editing of the albumin locus as a platform for protein replacement therapy.

作者信息

Sharma Rajiv, Anguela Xavier M, Doyon Yannick, Wechsler Thomas, DeKelver Russell C, Sproul Scott, Paschon David E, Miller Jeffrey C, Davidson Robert J, Shivak David, Zhou Shangzhen, Rieders Julianne, Gregory Philip D, Holmes Michael C, Rebar Edward J, High Katherine A

机构信息

Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA;

Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA; Howard Hughes Medical Institute, Philadelphia, PA; and.

出版信息

Blood. 2015 Oct 8;126(15):1777-84. doi: 10.1182/blood-2014-12-615492. Epub 2015 Aug 21.

Abstract

Site-specific genome editing provides a promising approach for achieving long-term, stable therapeutic gene expression. Genome editing has been successfully applied in a variety of preclinical models, generally focused on targeting the diseased locus itself; however, limited targeting efficiency or insufficient expression from the endogenous promoter may impede the translation of these approaches, particularly if the desired editing event does not confer a selective growth advantage. Here we report a general strategy for liver-directed protein replacement therapies that addresses these issues: zinc finger nuclease (ZFN) -mediated site-specific integration of therapeutic transgenes within the albumin gene. By using adeno-associated viral (AAV) vector delivery in vivo, we achieved long-term expression of human factors VIII and IX (hFVIII and hFIX) in mouse models of hemophilia A and B at therapeutic levels. By using the same targeting reagents in wild-type mice, lysosomal enzymes were expressed that are deficient in Fabry and Gaucher diseases and in Hurler and Hunter syndromes. The establishment of a universal nuclease-based platform for secreted protein production would represent a critical advance in the development of safe, permanent, and functional cures for diverse genetic and nongenetic diseases.

摘要

位点特异性基因组编辑为实现长期、稳定的治疗性基因表达提供了一种很有前景的方法。基因组编辑已成功应用于多种临床前模型,通常聚焦于靶向疾病位点本身;然而,靶向效率有限或内源性启动子表达不足可能会阻碍这些方法的转化应用,特别是当所需的编辑事件不能赋予选择性生长优势时。在此,我们报告一种针对肝脏的蛋白质替代疗法的通用策略,该策略解决了这些问题:锌指核酸酶(ZFN)介导治疗性转基因在白蛋白基因内的位点特异性整合。通过在体内使用腺相关病毒(AAV)载体递送,我们在血友病A和B的小鼠模型中实现了人凝血因子VIII和IX(hFVIII和hFIX)的治疗水平的长期表达。通过在野生型小鼠中使用相同的靶向试剂,表达了法布里病、戈谢病、Hurler综合征和Hunter综合征中缺乏的溶酶体酶。建立一个基于核酸酶的通用平台来生产分泌蛋白,将代表在开发针对各种遗传和非遗传疾病的安全、永久和有效的治疗方法方面取得关键进展。

相似文献

1
In vivo genome editing of the albumin locus as a platform for protein replacement therapy.
Blood. 2015 Oct 8;126(15):1777-84. doi: 10.1182/blood-2014-12-615492. Epub 2015 Aug 21.
3
Robust ZFN-mediated genome editing in adult hemophilic mice.
Blood. 2013 Nov 7;122(19):3283-7. doi: 10.1182/blood-2013-04-497354. Epub 2013 Oct 1.
4
Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human Factor VIII.
Sci Rep. 2019 Nov 14;9(1):16838. doi: 10.1038/s41598-019-53198-y.
6
Hemophilia Gene Therapy: Ready for Prime Time?
Hum Gene Ther. 2017 Nov;28(11):1013-1023. doi: 10.1089/hum.2017.116. Epub 2017 Aug 3.
7
Characterization of Adeno-Associated Viral Vector-Mediated Human Factor VIII Gene Therapy in Hemophilia A Mice.
Hum Gene Ther. 2017 May;28(5):392-402. doi: 10.1089/hum.2016.128. Epub 2017 Jan 5.
8
In vivo genome editing restores haemostasis in a mouse model of haemophilia.
Nature. 2011 Jun 26;475(7355):217-21. doi: 10.1038/nature10177.
9
Looking to the future of gene therapy for hemophilia A and B.
Expert Rev Hematol. 2023 Jul-Dec;16(11):807-809. doi: 10.1080/17474086.2023.2268279. Epub 2023 Nov 17.
10
Development of a Clinical Candidate AAV3 Vector for Gene Therapy of Hemophilia B.
Hum Gene Ther. 2020 Oct;31(19-20):1114-1123. doi: 10.1089/hum.2020.099. Epub 2020 Aug 17.

引用本文的文献

1
Transforming Hemophilia Management: Lessons from Gene Therapy Clinical Trials.
Mol Biotechnol. 2025 Jun 30. doi: 10.1007/s12033-025-01464-y.
2
3
Programmable gene insertion in human cells with a laboratory-evolved CRISPR-associated transposase.
Science. 2025 May 15;388(6748):eadt5199. doi: 10.1126/science.adt5199.
4
Clinical perspective: Advancing hemophilia treatment through gene therapy approaches.
Mol Ther. 2025 Jun 4;33(6):2350-2362. doi: 10.1016/j.ymthe.2025.04.023. Epub 2025 Apr 21.
5
Rescue of lysosomal acid lipase deficiency in mice by rAAV8 liver gene transfer.
Commun Med (Lond). 2025 Apr 11;5(1):110. doi: 10.1038/s43856-025-00816-8.
6
Gene regulation technologies for gene and cell therapy.
Mol Ther. 2025 May 7;33(5):2104-2122. doi: 10.1016/j.ymthe.2025.04.004. Epub 2025 Apr 6.
7
Current trends in gene therapy to treat inherited disorders of the brain.
Mol Ther. 2025 May 7;33(5):1988-2014. doi: 10.1016/j.ymthe.2025.03.057. Epub 2025 Apr 2.
8
Advanced delivery systems for gene editing: A comprehensive review from the GenE-HumDi COST Action Working Group.
Mol Ther Nucleic Acids. 2025 Jan 17;36(1):102457. doi: 10.1016/j.omtn.2025.102457. eCollection 2025 Mar 11.
9
Gene Therapy for Inherited Liver Disease: To Add or to Edit.
Int J Mol Sci. 2024 Nov 21;25(23):12514. doi: 10.3390/ijms252312514.
10
Precision and efficacy of RNA-guided DNA integration in high-expressing muscle loci.
Mol Ther Nucleic Acids. 2024 Sep 2;35(4):102320. doi: 10.1016/j.omtn.2024.102320. eCollection 2024 Dec 10.

本文引用的文献

1
Long-term safety and efficacy of factor IX gene therapy in hemophilia B.
N Engl J Med. 2014 Nov 20;371(21):1994-2004. doi: 10.1056/NEJMoa1407309.
2
Promoterless gene targeting without nucleases ameliorates haemophilia B in mice.
Nature. 2015 Jan 15;517(7534):360-4. doi: 10.1038/nature13864. Epub 2014 Oct 29.
3
Targeted genome editing in human repopulating haematopoietic stem cells.
Nature. 2014 Jun 12;510(7504):235-240. doi: 10.1038/nature13420. Epub 2014 May 28.
4
Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype.
Nat Biotechnol. 2014 Jun;32(6):551-3. doi: 10.1038/nbt.2884. Epub 2014 Mar 30.
5
Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV.
N Engl J Med. 2014 Mar 6;370(10):901-10. doi: 10.1056/NEJMoa1300662.
6
Robust ZFN-mediated genome editing in adult hemophilic mice.
Blood. 2013 Nov 7;122(19):3283-7. doi: 10.1182/blood-2013-04-497354. Epub 2013 Oct 1.
7
Overcoming preexisting humoral immunity to AAV using capsid decoys.
Sci Transl Med. 2013 Jul 17;5(194):194ra92. doi: 10.1126/scitranslmed.3005795.
9
Minimal modification in the factor VIII B-domain sequence ameliorates the murine hemophilia A phenotype.
Blood. 2013 May 23;121(21):4396-403. doi: 10.1182/blood-2012-10-464164. Epub 2013 Jan 31.
10
AAV2 gene therapy readministration in three adults with congenital blindness.
Sci Transl Med. 2012 Feb 8;4(120):120ra15. doi: 10.1126/scitranslmed.3002865.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验