Suppr超能文献

可见光可控的蛋白质上偶氮桥的原位形成

In Situ Formation of an Azo Bridge on Proteins Controllable by Visible Light.

作者信息

Hoppmann Christian, Maslennikov Innokentiy, Choe Senyon, Wang Lei

机构信息

Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco , San Francisco, California 94158, United States.

Structural Biology Laboratory, Qualcomm Institute, University of California San Diego , San Diego, California 92093, United States.

出版信息

J Am Chem Soc. 2015 Sep 9;137(35):11218-21. doi: 10.1021/jacs.5b06234. Epub 2015 Aug 28.

Abstract

Optical modulation of proteins provides superior spatiotemporal resolution for understanding biological processes, and photoswitches built on light-sensitive proteins have been significantly advancing neuronal and cellular studies. Small molecule photoswitches could complement protein-based switches by mitigating potential interference and affording high specificity for modulation sites. However, genetic encodability and responsiveness to nonultraviolet light, two desired properties possessed by protein photoswitches, are challenging to be engineered into small molecule photoswitches. Here we developed a small molecule photoswitch that can be genetically installed onto proteins in situ and controlled by visible light. A pentafluoro azobenzene-based photoswitchable click amino acid (F-PSCaa) was designed to isomerize in response to visible light. After genetic incorporation into proteins via the expansion of the genetic code, F-PSCaa reacts with a nearby cysteine within the protein generating an azo bridge in situ. The resultant bridge is switchable by visible light and allows conformation and binding of CaM to be regulated by such light. This photoswitch should prove valuable in optobiology for its minimal interference, site flexibility, genetic encodability, and response to the more biocompatible visible light.

摘要

蛋白质的光调制为理解生物过程提供了卓越的时空分辨率,基于光敏蛋白构建的光开关极大地推动了神经元和细胞研究。小分子光开关可以通过减轻潜在干扰并为调制位点提供高特异性来补充基于蛋白质的开关。然而,蛋白质光开关所具有的两个理想特性——基因可编码性和对非紫外光的响应性,很难设计到小分子光开关中。在此,我们开发了一种小分子光开关,它可以原位基因安装到蛋白质上并由可见光控制。设计了一种基于五氟偶氮苯的光开关型点击氨基酸(F-PSCaa),使其能响应可见光发生异构化。通过扩展遗传密码将其基因掺入蛋白质后,F-PSCaa与蛋白质内附近的半胱氨酸反应,原位生成一个偶氮桥。所得的桥可由可见光切换,并允许通过这种光调节钙调蛋白的构象和结合。这种光开关因其干扰最小、位点灵活性、基因可编码性以及对生物相容性更好的可见光的响应性,在光生物学中应具有重要价值。

相似文献

1
In Situ Formation of an Azo Bridge on Proteins Controllable by Visible Light.
J Am Chem Soc. 2015 Sep 9;137(35):11218-21. doi: 10.1021/jacs.5b06234. Epub 2015 Aug 28.
2
Genetically encoding photoswitchable click amino acids for general optical control of conformation and function of proteins.
Methods Enzymol. 2019;624:249-264. doi: 10.1016/bs.mie.2019.04.016. Epub 2019 May 2.
3
Photoswitchable click amino acids: light control of conformation and bioactivity.
Chembiochem. 2011 Nov 25;12(17):2555-9. doi: 10.1002/cbic.201100578. Epub 2011 Oct 13.
4
Genetically encoding photoswitchable click amino acids in Escherichia coli and mammalian cells.
Angew Chem Int Ed Engl. 2014 Apr 7;53(15):3932-6. doi: 10.1002/anie.201400001. Epub 2014 Mar 11.
5
Azobenzene-based small molecular photoswitches for protein modulation.
Org Biomol Chem. 2018 Nov 14;16(44):8434-8445. doi: 10.1039/c8ob02157k.
6
Reversible and Tunable Photoswitching of Protein Function through Genetic Encoding of Azobenzene Amino Acids in Mammalian Cells.
Chembiochem. 2018 Oct 18;19(20):2178-2185. doi: 10.1002/cbic.201800226. Epub 2018 Oct 2.
7
Light-controlled modulation of gene expression by chemical optoepigenetic probes.
Nat Chem Biol. 2016 May;12(5):317-23. doi: 10.1038/nchembio.2042. Epub 2016 Mar 14.
8
Light-Switchable Azobenzene-Containing Macromolecules: From UV to Near Infrared.
Macromol Rapid Commun. 2018 Jan;39(1). doi: 10.1002/marc.201700220. Epub 2017 Jun 23.
9
Let there be light: how to use photoswitchable cross-linker to reprogram proteins.
Biochem Soc Trans. 2017 Jun 15;45(3):831-837. doi: 10.1042/BST20160386.
10
Synthetic gene involving azobenzene-tethered T7 promoter for the photocontrol of gene expression by visible light.
ACS Synth Biol. 2015 Apr 17;4(4):365-70. doi: 10.1021/sb5001092. Epub 2014 Aug 27.

引用本文的文献

1
Reversible Substrate-Specific Photocontrol of the Chemotherapeutic Asparaginase(-Glutaminase) from .
ACS Catal. 2025 May 6;15(10):8462-8478. doi: 10.1021/acscatal.5c01608. eCollection 2025 May 16.
2
Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion.
Chem Rev. 2025 Feb 26;125(4):1663-1717. doi: 10.1021/acs.chemrev.4c00224. Epub 2025 Feb 10.
3
Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.
Chem Rev. 2024 Oct 9;124(19):11008-11062. doi: 10.1021/acs.chemrev.4c00243. Epub 2024 Sep 5.
4
Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology.
Chem Rev. 2024 Sep 25;124(18):10577-10617. doi: 10.1021/acs.chemrev.3c00938. Epub 2024 Aug 29.
5
Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.
Chem Rev. 2024 Sep 25;124(18):10281-10362. doi: 10.1021/acs.chemrev.3c00878. Epub 2024 Aug 9.
6
Genetically Enabling Phosphorus Fluoride Exchange Click Chemistry in Proteins.
Chem. 2024 Jun 13;10(6):1868-1884. doi: 10.1016/j.chempr.2024.02.010. Epub 2024 Mar 5.
7
Noncanonical Amino Acids in Biocatalysis.
Chem Rev. 2024 Jul 24;124(14):8740-8786. doi: 10.1021/acs.chemrev.4c00120. Epub 2024 Jul 3.
8
Biospecific Chemistry for Covalent Linking of Biomacromolecules.
Chem Rev. 2024 Jul 10;124(13):8516-8549. doi: 10.1021/acs.chemrev.4c00066. Epub 2024 Jun 24.
9
Synthetic Biology Meets Ca Release-Activated Ca Channel-Dependent Immunomodulation.
Cells. 2024 Mar 7;13(6):468. doi: 10.3390/cells13060468.
10
Visible Light Control over the Cytolytic Activity of a Toxic Pore-Forming Protein.
ACS Chem Biol. 2024 Feb 16;19(2):451-461. doi: 10.1021/acschembio.3c00640. Epub 2024 Feb 6.

本文引用的文献

1
Genetically encoding an electrophilic amino acid for protein stapling and covalent binding to native receptors.
ACS Chem Biol. 2014 Sep 19;9(9):1956-61. doi: 10.1021/cb500453a. Epub 2014 Jul 15.
2
Using (19)F NMR to probe biological interactions of proteins and peptides.
ACS Chem Biol. 2014 Jun 20;9(6):1242-50. doi: 10.1021/cb500111u. Epub 2014 May 6.
3
Genetically encoding photoswitchable click amino acids in Escherichia coli and mammalian cells.
Angew Chem Int Ed Engl. 2014 Apr 7;53(15):3932-6. doi: 10.1002/anie.201400001. Epub 2014 Mar 11.
4
Proximity-enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids.
Angew Chem Int Ed Engl. 2014 Feb 17;53(8):2190-3. doi: 10.1002/anie.201308794. Epub 2014 Jan 21.
5
A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor.
J Am Chem Soc. 2013 Nov 27;135(47):17683-6. doi: 10.1021/ja408104w. Epub 2013 Nov 14.
6
Adding an unnatural covalent bond to proteins through proximity-enhanced bioreactivity.
Nat Methods. 2013 Sep;10(9):885-8. doi: 10.1038/nmeth.2595. Epub 2013 Aug 4.
7
Photoswitching azo compounds in vivo with red light.
J Am Chem Soc. 2013 Jul 3;135(26):9777-84. doi: 10.1021/ja402220t. Epub 2013 Jun 21.
9
A perfluoroaryl-cysteine S(N)Ar chemistry approach to unprotected peptide stapling.
J Am Chem Soc. 2013 Apr 24;135(16):5946-9. doi: 10.1021/ja400119t. Epub 2013 Apr 16.
10
o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light.
J Am Chem Soc. 2012 Dec 26;134(51):20597-600. doi: 10.1021/ja310323y. Epub 2012 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验