Suppr超能文献

鸟类大脑中不存在对胼胝体神经元发育有贡献的早期放射状胶质祖细胞亚群。

Subset of early radial glial progenitors that contribute to the development of callosal neurons is absent from avian brain.

作者信息

García-Moreno Fernando, Molnár Zoltán

机构信息

Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, United Kingdom

出版信息

Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5058-67. doi: 10.1073/pnas.1506377112. Epub 2015 Aug 25.

Abstract

The classical view of mammalian cortical development suggests that pyramidal neurons are generated in a temporal sequence, with all radial glial cells (RGCs) contributing to both lower and upper neocortical layers. A recent opposing proposal suggests there is a subgroup of fate-restricted RGCs in the early neocortex, which generates only upper-layer neurons. Little is known about the existence of fate restriction of homologous progenitors in other vertebrate species. We investigated the lineage of selected Emx2+ [vertebrate homeobox gene related to Drosophila empty spiracles (ems)] RGCs in mouse neocortex and chick forebrain and found evidence for both sequential and fate-restricted programs only in mouse, indicating that these complementary populations coexist in the developing mammalian but not avian brain. Among a large population of sequentially programmed RGCs in the mouse brain, a subset of self-renewing progenitors lack neurogenic potential during the earliest phase of corticogenesis. After a considerable delay, these progenitors generate callosal upper-layer neurons and glia. On the other hand, we found no homologous delayed population in any sectors of the chick forebrain. This finding suggests that neurogenic delay of selected RGCs may be unique to mammals and possibly associated with the evolution of the corpus callosum.

摘要

哺乳动物皮质发育的经典观点认为,锥体神经元按时间顺序产生,所有放射状胶质细胞(RGCs)对新皮质的下层和上层都有贡献。最近有一种相反的观点认为,在早期新皮质中存在一组命运受限的RGCs,它们只产生上层神经元。关于其他脊椎动物物种中同源祖细胞命运限制的存在情况,人们知之甚少。我们研究了小鼠新皮质和鸡前脑中选定的Emx2+[与果蝇空气门(ems)相关的脊椎动物同源框基因]RGCs的谱系,结果发现只有在小鼠中存在按顺序和命运受限程序的证据,这表明这些互补群体共存于发育中的哺乳动物大脑而非鸟类大脑中。在小鼠大脑中大量按顺序编程的RGCs中,一部分自我更新的祖细胞在皮质发生的最早阶段缺乏神经发生潜力。经过相当长的延迟后,这些祖细胞产生胼胝体上层神经元和神经胶质细胞。另一方面,我们在鸡前脑的任何区域都未发现同源的延迟群体。这一发现表明,选定RGCs的神经发生延迟可能是哺乳动物特有的,并且可能与胼胝体的进化有关。

相似文献

1
Subset of early radial glial progenitors that contribute to the development of callosal neurons is absent from avian brain.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5058-67. doi: 10.1073/pnas.1506377112. Epub 2015 Aug 25.
4
The characteristics of excitatory lineage differentiation and the developmental conservation in Reeler neocortex.
Cell Prolif. 2024 May;57(5):e13587. doi: 10.1111/cpr.13587. Epub 2023 Dec 12.
5
Fate-restricted neural progenitors in the mammalian cerebral cortex.
Science. 2012 Aug 10;337(6095):746-9. doi: 10.1126/science.1223616.
9
Memo1-Mediated Tiling of Radial Glial Cells Facilitates Cerebral Cortical Development.
Neuron. 2019 Sep 4;103(5):836-852.e5. doi: 10.1016/j.neuron.2019.05.049. Epub 2019 Jul 2.
10
Sustained Pax6 Expression Generates Primate-like Basal Radial Glia in Developing Mouse Neocortex.
PLoS Biol. 2015 Aug 7;13(8):e1002217. doi: 10.1371/journal.pbio.1002217. eCollection 2015 Aug.

引用本文的文献

3
Non-uniform temporal scaling of developmental processes in the mammalian cortex.
Nat Commun. 2023 Sep 23;14(1):5950. doi: 10.1038/s41467-023-41652-5.
4
Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes.
Front Neurosci. 2022 Apr 25;16:843794. doi: 10.3389/fnins.2022.843794. eCollection 2022.
5
Cell Type-Specific Transcriptional Control of Gsk3β in the Developing Mammalian Neocortex.
Front Neurosci. 2022 Mar 23;16:811689. doi: 10.3389/fnins.2022.811689. eCollection 2022.
6
From Progenitors to Progeny: Shaping Striatal Circuit Development and Function.
J Neurosci. 2021 Nov 17;41(46):9483-9502. doi: 10.1523/JNEUROSCI.0620-21.2021.
7
A protocol for electroporation of chicken and snake embryos to study forebrain development.
STAR Protoc. 2021 Jul 28;2(3):100692. doi: 10.1016/j.xpro.2021.100692. eCollection 2021 Sep 17.
9
The Ferret as a Model System for Neocortex Development and Evolution.
Front Cell Dev Biol. 2021 Apr 29;9:661759. doi: 10.3389/fcell.2021.661759. eCollection 2021.

本文引用的文献

1
2
Lineage Tracing Using Cux2-Cre and Cux2-CreERT2 Mice.
Neuron. 2015 May 20;86(4):1091-1099. doi: 10.1016/j.neuron.2015.04.019.
3
Deterministic progenitor behavior and unitary production of neurons in the neocortex.
Cell. 2014 Nov 6;159(4):775-88. doi: 10.1016/j.cell.2014.10.027.
4
Emx2 expression levels in NSCs modulate astrogenesis rates by regulating EgfR and Fgf9.
Glia. 2015 Mar;63(3):412-22. doi: 10.1002/glia.22761. Epub 2014 Oct 18.
5
Evolution and development of interhemispheric connections in the vertebrate forebrain.
Front Hum Neurosci. 2014 Jul 14;8:497. doi: 10.3389/fnhum.2014.00497. eCollection 2014.
6
bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells.
Neuron. 2014 Apr 2;82(1):9-23. doi: 10.1016/j.neuron.2014.03.018.
7
9
Adult pallium transcriptomes surprise in not reflecting predicted homologies across diverse chicken and mouse pallial sectors.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13150-5. doi: 10.1073/pnas.1307444110. Epub 2013 Jul 22.
10
Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex.
Neuron. 2013 Jan 9;77(1):19-34. doi: 10.1016/j.neuron.2012.12.022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验