Suppr超能文献

基于基底膜的葡萄糖传感器涂层可增强体内连续血糖监测。

Basement Membrane-Based Glucose Sensor Coatings Enhance Continuous Glucose Monitoring in Vivo.

作者信息

Klueh Ulrike, Qiao Yi, Czajkowski Caroline, Ludzinska Izabela, Antar Omar, Kreutzer Donald L

机构信息

Center for Molecular Tissue Engineering, University of Connecticut, School of Medicine, Farmington, CT, USA Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT, USA

Center for Molecular Tissue Engineering, University of Connecticut, School of Medicine, Farmington, CT, USA Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT, USA.

出版信息

J Diabetes Sci Technol. 2015 Aug 25;9(5):957-65. doi: 10.1177/1932296815598776.

Abstract

BACKGROUND

Implantable glucose sensors demonstrate a rapid decline in function that is likely due to biofouling of the sensor. Previous efforts directed at overcoming this issue has generally focused on the use of synthetic polymer coatings, with little apparent effect in vivo, clearly a novel approach is required. We believe that the key to extending sensor life span in vivo is the development of biocompatible basement membrane (BM) based bio-hydrogels as coatings for glucose sensors.

METHOD

BM based bio-hydrogel sensor coatings were developed using purified BM preparations (ie, Cultrex from Trevigen Inc). Modified Abbott sensors were coated with Cultrex BM extracts. Sensor performance was evaluated for the impact of these coatings in vitro and in vivo in a continuous glucose monitoring (CGM) mouse model. In vivo sensor function was assessed over a 28-day time period expressed as mean absolute relative difference (MARD) values. Tissue reactivity of both Cultrex coated and uncoated glucose sensors was evaluated at 7, 14, 21 and 28 days post-sensor implantation with standard histological techniques.

RESULTS

The data demonstrate that Cultrex-based sensor coatings had no effect on glucose sensor function in vitro. In vivo glucose sensor performance was enhanced following BM coating as determined by MARD analysis, particularly in weeks 2 and 3. In vivo studies also demonstrated that Cultrex coatings significantly decreased sensor-induced tissue reactions at the sensor implantation sites.

CONCLUSION

Basement-membrane-based sensor coatings enhance glucose sensor function in vivo, by minimizing or preventing sensor-induced tissues reactions.

摘要

背景

可植入式葡萄糖传感器功能迅速衰退,这可能是由于传感器生物污染所致。此前为克服这一问题所做的努力通常集中在使用合成聚合物涂层,但在体内几乎没有明显效果,显然需要一种新方法。我们认为,延长传感器在体内使用寿命的关键在于开发基于生物相容性基底膜(BM)的生物水凝胶作为葡萄糖传感器的涂层。

方法

使用纯化的基底膜制剂(即来自Trevigen公司的Cultrex)开发基于基底膜的生物水凝胶传感器涂层。用Cultrex基底膜提取物涂覆改良后的雅培传感器。在连续葡萄糖监测(CGM)小鼠模型中,评估这些涂层在体外和体内对传感器性能的影响。在28天的时间内评估体内传感器功能,以平均绝对相对差异(MARD)值表示。在传感器植入后第7、14、21和28天,用标准组织学技术评估Cultrex涂层和未涂层葡萄糖传感器的组织反应性。

结果

数据表明,基于Cultrex的传感器涂层在体外对葡萄糖传感器功能没有影响。通过MARD分析确定,基底膜涂层后体内葡萄糖传感器性能得到增强,尤其是在第2周和第3周。体内研究还表明,Cultrex涂层显著降低了传感器植入部位的传感器诱导组织反应。

结论

基于基底膜的传感器涂层通过最小化或防止传感器诱导的组织反应,增强了体内葡萄糖传感器的功能。

相似文献

1
Basement Membrane-Based Glucose Sensor Coatings Enhance Continuous Glucose Monitoring in Vivo.
J Diabetes Sci Technol. 2015 Aug 25;9(5):957-65. doi: 10.1177/1932296815598776.
2
Crosslinked basement membrane-based coatings enhance glucose sensor function and continuous glucose monitoring in vivo.
J Biomed Mater Res A. 2018 Jan;106(1):7-16. doi: 10.1002/jbm.a.36206. Epub 2017 Sep 19.
3
Murine model of implantable glucose sensors: a novel model for glucose sensor development.
Diabetes Technol Ther. 2005 Oct;7(5):727-37; discussion 738-40. doi: 10.1089/dia.2005.7.727.
5
Porous, Dexamethasone-loaded polyurethane coatings extend performance window of implantable glucose sensors in vivo.
Acta Biomater. 2016 Jan;30:106-115. doi: 10.1016/j.actbio.2015.10.045. Epub 2015 Oct 29.
6
Polymeric "smart" coatings to prevent foreign body response to implantable biosensors.
J Control Release. 2013 Aug 10;169(3):341-7. doi: 10.1016/j.jconrel.2012.12.028. Epub 2013 Jan 5.
7
Influence of time point of calibration on accuracy of continuous glucose monitoring in individuals with type 1 diabetes.
Diabetes Technol Ther. 2012 Jul;14(7):583-8. doi: 10.1089/dia.2011.0271. Epub 2012 Apr 18.
8
Performance characterization of an abiotic and fluorescent-based continuous glucose monitoring system in patients with type 1 diabetes.
Biosens Bioelectron. 2014 Nov 15;61:227-31. doi: 10.1016/j.bios.2014.05.022. Epub 2014 May 17.
10
Continuous glucose monitoring in subcutaneous tissue using factory-calibrated sensors: a pilot study.
Diabetes Technol Ther. 2010 Aug;12(8):591-7. doi: 10.1089/dia.2010.0051.

引用本文的文献

1
Impact of Bindarit, a CCL2 Chemokine Synthesis Inhibitor, on Macrophage-Based Biofouling and Continuous Glucose Monitoring .
Biosens Bioelectron X. 2024 Aug;19. doi: 10.1016/j.biosx.2024.100511. Epub 2024 Jun 21.
2
Modulating the foreign body response of implants for diabetes treatment.
Adv Drug Deliv Rev. 2021 Jul;174:87-113. doi: 10.1016/j.addr.2021.01.011. Epub 2021 Jan 21.
3
Continuous Glucose Monitoring Devices: Past, Present, and Future Focus on the History and Evolution of Technological Innovation.
J Diabetes Sci Technol. 2021 May;15(3):676-683. doi: 10.1177/1932296819899394. Epub 2020 Jan 13.
4
Crosslinked basement membrane-based coatings enhance glucose sensor function and continuous glucose monitoring in vivo.
J Biomed Mater Res A. 2018 Jan;106(1):7-16. doi: 10.1002/jbm.a.36206. Epub 2017 Sep 19.
5
Future of Automated Insulin Delivery Systems.
Diabetes Technol Ther. 2017 Jun;19(S3):S67-S72. doi: 10.1089/dia.2017.0012.
6
Impact of CCL2 and CCR2 chemokine/receptor deficiencies on macrophage recruitment and continuous glucose monitoring in vivo.
Biosens Bioelectron. 2016 Dec 15;86:262-269. doi: 10.1016/j.bios.2016.06.026. Epub 2016 Jun 23.
7
Continuous Glucose Monitoring, Future Products, and Update on Worldwide Artificial Pancreas Projects.
Diabetes Technol Ther. 2016 Feb;18 Suppl 2(Suppl 2):S253-63. doi: 10.1089/dia.2015.0345.

本文引用的文献

1
Cell based metabolic barriers to glucose diffusion: macrophages and continuous glucose monitoring.
Biomaterials. 2014 Mar;35(10):3145-53. doi: 10.1016/j.biomaterials.2014.01.001. Epub 2014 Jan 22.
2
Impact of macrophage deficiency and depletion on continuous glucose monitoring in vivo.
Biomaterials. 2014 Feb;35(6):1789-96. doi: 10.1016/j.biomaterials.2013.11.055. Epub 2013 Dec 9.
3
Continuous glucose monitoring: 40 years, what we've learned and what's next.
Chemphyschem. 2013 Jul 22;14(10):2032-44. doi: 10.1002/cphc.201300172. Epub 2013 May 6.
4
Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice.
J Surg Res. 2012 Aug;176(2):423-9. doi: 10.1016/j.jss.2011.09.031. Epub 2011 Oct 11.
8
Biocompatibility of electrochemical glucose sensors implanted in the subcutis of pigs.
Diabetes Technol Ther. 2006 Aug;8(4):463-75. doi: 10.1089/dia.2006.8.463.
9
Continuous glucose monitoring in normal mice and mice with prediabetes and diabetes.
Diabetes Technol Ther. 2006 Jun;8(3):402-12. doi: 10.1089/dia.2006.8.402.
10
A flexible and wearable glucose sensor based on functional polymers with soft-MEMS techniques.
Biosens Bioelectron. 2006 Oct 15;22(4):558-62. doi: 10.1016/j.bios.2006.05.006. Epub 2006 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验