Vladimirov Gleb, Kostyukevich Yury, Hendrickson Christopher L, Blakney Greg T, Nikolaev Eugene
Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia. Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia. Institute for Energy Problems of Chemical Physics, Russian Academy of Science, Moscow, Russia.
Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia. Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia. Institute for Energy Problems of Chemical Physics, Russian Academy of Science, Moscow, Russia..
Eur J Mass Spectrom (Chichester). 2015;21(3):443-9. doi: 10.1255/ejms.1375.
A three-dimensional code based on the particle-in-cell algorithm modified to account for the inhomogeneity of the magnetic field was applied to determine the effect of Z(1), Z(2), Z(3), Z(4), X, Y, ZX, ZY, XZ(2) YZ(2), XY and X(2)-Y(2) components of an orthogonal magnetic field expansion on ion motion during detection in an FT-ICR cell. Simulations were performed for magnetic field strengths of 4.7, 7, 14.5 and 21 Tesla, including experimentally determined magnetic field spatial distributions for existing 4.7 T and 14.5 T magnets. The effect of magnetic field inhomogeneity on ion cloud stabilization ("ion condensation") at high numbers of ions was investigated by direct simulations of individual ion trajectories. Z(1), Z(2), Z(3) and Z(4) components have the largest effect (especially Z(1)) on ion cloud stability. Higher magnetic field strength and lower m/z demand higher relative magnetic field homogeneity to maintain cloud coherence for a fixed time period. The dependence of mass resolving power upper limit on Z(1) inhomogeneity is evaluated for different magnetic fields and m/z. The results serve to set the homogeneity requirements for various orthogonal magnetic field components (shims) for future FT-ICR magnet design.
一种基于粒子模拟算法并经过修改以考虑磁场不均匀性的三维编码,被用于确定正交磁场展开的Z(1)、Z(2)、Z(3)、Z(4)、X、Y、ZX、ZY、XZ(2)、YZ(2)、XY和X(2)-Y(2)分量对傅里叶变换离子回旋共振(FT-ICR)池中检测期间离子运动的影响。针对4.7、7、14.5和21特斯拉的磁场强度进行了模拟,包括现有4.7 T和14.5 T磁体的实验确定的磁场空间分布。通过对单个离子轨迹的直接模拟,研究了磁场不均匀性对高离子数时离子云稳定性(“离子凝聚”)的影响。Z(1)、Z(2)、Z(3)和Z(4)分量对离子云稳定性的影响最大(尤其是Z(1))。对于固定的时间段,更高的磁场强度和更低的质荷比需要更高的相对磁场均匀性来维持云的相干性。针对不同磁场和质荷比,评估了质量分辨能力上限对Z(1)不均匀性的依赖性。这些结果有助于为未来的FT-ICR磁体设计设定各种正交磁场分量(匀场线圈)的均匀性要求。