Mann Sander A, Garnett Erik C
Center for Nanophotonics, FOM Institute AMOLF , Science Park Amsterdam 104, 1098 XG Amsterdam, The Netherlands.
ACS Photonics. 2015 Jul 15;2(7):816-821. doi: 10.1021/acsphotonics.5b00260. Epub 2015 Jun 30.
We present an approach to spectrum splitting for photovoltaics that utilizes the resonant optical properties of nanostructures for simultaneous voltage enhancement and spatial separation of different colors of light. Using metal-insulator-metal resonators commonly used in broadband metamaterial absorbers we show theoretically that output voltages can be enhanced significantly compared to single-junction devices. However, the approach is general and works for any type of resonator with a large absorption cross section. Due to its resonant nature, the spectrum splitting occurs within only a fraction of the wavelength, as opposed to traditional spectrum splitting methods, where many wavelengths are required. Combining nanophotonic spectrum splitting with other nanophotonic approaches to voltage enhancements, such as angle restriction and concentration, may lead to highly efficient but deeply subwavelength photovoltaic devices.
我们提出了一种用于光伏的光谱分裂方法,该方法利用纳米结构的共振光学特性来同时提高电压并对不同颜色的光进行空间分离。通过使用宽带超材料吸收器中常用的金属-绝缘体-金属谐振器,我们从理论上表明,与单结器件相比,输出电压可以显著提高。然而,该方法具有通用性,适用于任何具有大吸收截面的谐振器类型。由于其共振特性,光谱分裂仅在波长的一小部分内发生,这与传统的光谱分裂方法不同,传统方法需要许多波长。将纳米光子光谱分裂与其他用于提高电压的纳米光子方法(如角度限制和聚光)相结合,可能会导致高效但深度亚波长的光伏器件。