Suppr超能文献

芯片电泳中的双光子激发实现了在非紫外线透明全身聚合物芯片中进行无标记荧光检测。

Two-photon excitation in chip electrophoresis enabling label-free fluorescence detection in non-UV transparent full-body polymer chips.

作者信息

Geissler David, Belder Detlev

机构信息

Universität Leipzig, Institut für Analytische Chemie, Leipzig, Germany.

出版信息

Electrophoresis. 2015 Dec;36(23):2976-82. doi: 10.1002/elps.201500192. Epub 2015 Oct 5.

Abstract

One of the most commonly employed detection methods in microfluidic research is fluorescence detection, due to its ease of integration and excellent sensitivity. Many analytes though do not show luminescence when excited in the visible light spectrum, require suitable dyes. Deep-ultraviolet (UV) excitation (<300 nm) allows label-free detection of a broader range of analytes but also mandates the use of expensive fused silica glass, which is transparent to UV light. Herein, we report the first application of label-free deep UV fluorescence detection in non-UV transparent full-body polymer microfluidic devices. This was achieved by means of two-photon excitation in the visible range (λex = 532 nm). Issues associated with the low optical transmittance of plastics in the UV range were successfully circumvented in this way. The technique was investigated by application to microchip electrophoresis of small aromatic compounds. Various polymers, such as poly(methyl methacrylate), cyclic olefin polymer, and copolymer as well as poly(dimethylsiloxane) were investigated and compared with respect to achievable LOD and ruggedness against photodamage. To demonstrate the applicability of the technique, the method was also applied to the determination of serotonin and tryptamine in fruit samples.

摘要

荧光检测是微流控研究中最常用的检测方法之一,因其易于集成且灵敏度高。然而,许多分析物在可见光光谱激发下不发光,需要合适的染料。深紫外(UV)激发(<300 nm)允许对更广泛的分析物进行无标记检测,但也需要使用昂贵的熔融石英玻璃,这种玻璃对紫外光是透明的。在此,我们报道了无标记深紫外荧光检测在非紫外透明全身体积聚合物微流控装置中的首次应用。这是通过在可见光范围内(λex = 532 nm)的双光子激发实现的。通过这种方式成功规避了与塑料在紫外范围内低光学透过率相关的问题。通过将该技术应用于小分子芳香族化合物的微芯片电泳对其进行了研究。研究并比较了各种聚合物,如聚甲基丙烯酸甲酯、环烯烃聚合物和共聚物以及聚二甲基硅氧烷在可实现的检测限和抗光损伤耐用性方面的情况。为了证明该技术的适用性,该方法还应用于水果样品中血清素和色胺的测定。

相似文献

5
Label-free analysis in chip electrophoresis applying deep UV fluorescence lifetime detection.
Electrophoresis. 2011 Nov;32(22):3108-14. doi: 10.1002/elps.201100204.
6
Rapid prototyping of electrochromatography chips for improved two-photon excited fluorescence detection.
Anal Chem. 2014 Apr 15;86(8):3773-9. doi: 10.1021/ac500793e. Epub 2014 Apr 7.
8
Improved native UV laser induced fluorescence detection for single cell analysis in poly(dimethylsiloxane) microfluidic devices.
J Chromatogr A. 2006 Oct 20;1130(2):195-200. doi: 10.1016/j.chroma.2006.06.008. Epub 2006 Jun 30.
10
Label-free fluorescence detection in capillary and microchip electrophoresis.
Anal Bioanal Chem. 2009 Jan;393(2):515-25. doi: 10.1007/s00216-008-2452-7. Epub 2008 Nov 1.

引用本文的文献

1
Two-photon fluorescence lifetime for label-free microfluidic droplet sorting.
Anal Bioanal Chem. 2022 Jan;414(1):721-730. doi: 10.1007/s00216-021-03745-2. Epub 2021 Nov 18.
2
Simultaneous label-free autofluorescence-multiharmonic microscopy and beyond.
APL Photonics. 2019 Oct;4(10). doi: 10.1063/1.5098349. Epub 2019 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验