Suppr超能文献

嗅球颗粒细胞生物物理模型中胆碱能和去甲肾上腺素能调制的功能分化

Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells.

作者信息

Li Guoshi, Linster Christiane, Cleland Thomas A

机构信息

Department of Psychology, Cornell University, Ithaca, New York;

Department of Neurobiology and Behavior, Cornell University, Ithaca, New York.

出版信息

J Neurophysiol. 2015 Dec;114(6):3177-200. doi: 10.1152/jn.00324.2015. Epub 2015 Sep 2.

Abstract

Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function.

摘要

嗅球颗粒细胞受到乙酰胆碱(ACh)和去甲肾上腺素(NE)的双重调节,但这些神经调质的作用尚未得到明确区分。我们使用了颗粒细胞的详细生物物理模拟,包括单独的颗粒细胞以及嵌入与二尖瓣细胞组成的微电路中的颗粒细胞,来测量和区分ACh和NE对细胞及微电路功能的影响。对颗粒细胞的胆碱能和去甲肾上腺素能调节作用基于从切片实验获得的数据;具体而言,ACh降低了钾离子M电流和钙依赖性钾电流的电导密度,而NE则非单调地调节欧姆钾电流的电导密度。我们报告称,ACh和NE对颗粒细胞生理的影响是不同的,且在功能上相互补充。ACh强烈调节颗粒细胞的放电频率和后电位,而NE双向调节阈下膜电位。当两者结合时,NE可以调节ACh诱导的去极化后电位和持续放电的表达。在一个用于研究颗粒细胞神经调节对二尖瓣细胞放电特性影响的微电路模拟中,ACh增加了二尖瓣细胞之间的尖峰同步性,而NE调节了信噪比。ACh和NE共同应用在功能上既改善了信噪比,又增强了二尖瓣细胞之间的尖峰同步性。总之,我们的计算结果支持ACh和NE在调节嗅球电路中具有不同且互补的作用,并表明NE可能在胆碱能功能的调节中发挥作用。

相似文献

1
Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells.
J Neurophysiol. 2015 Dec;114(6):3177-200. doi: 10.1152/jn.00324.2015. Epub 2015 Sep 2.
2
3
A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb.
J Neurosci. 2013 Feb 13;33(7):3037-58. doi: 10.1523/JNEUROSCI.2831-12.2013.
4
A model of cholinergic modulation in olfactory bulb and piriform cortex.
J Neurophysiol. 2013 Mar;109(5):1360-77. doi: 10.1152/jn.00577.2012. Epub 2012 Dec 5.
5
Activation of alpha1 and alpha2 noradrenergic receptors exert opposing effects on excitability of main olfactory bulb granule cells.
Neuroscience. 2010 Aug 25;169(2):882-92. doi: 10.1016/j.neuroscience.2010.05.010. Epub 2010 May 11.
7
Multiple and opposing roles of cholinergic transmission in the main olfactory bulb.
J Neurosci. 1999 Nov 1;19(21):9180-91. doi: 10.1523/JNEUROSCI.19-21-09180.1999.
10
Heterogeneous effects of norepinephrine on spontaneous and stimulus-driven activity in the male accessory olfactory bulb.
J Neurophysiol. 2017 Mar 1;117(3):1342-1351. doi: 10.1152/jn.00871.2016. Epub 2017 Jan 4.

引用本文的文献

1
Rapid online learning and robust recall in a neuromorphic olfactory circuit.
Nat Mach Intell. 2020 Mar;2(3):181-191. doi: 10.1038/s42256-020-0159-4. Epub 2020 Mar 16.
3
Norepinephrine-Induced Calcium Signaling and Store-Operated Calcium Entry in Olfactory Bulb Astrocytes.
Front Cell Neurosci. 2021 Mar 23;15:639754. doi: 10.3389/fncel.2021.639754. eCollection 2021.
4
Extrinsic neuromodulation in the rodent olfactory bulb.
Cell Tissue Res. 2021 Jan;383(1):507-524. doi: 10.1007/s00441-020-03365-9. Epub 2020 Dec 23.
5
Experience enhances certainty about olfactory stimuli under bulbar cholinergic control.
Learn Mem. 2020 Sep 15;27(10):414-417. doi: 10.1101/lm.051854.120. Print 2020 Oct.
6
Spiking and Membrane Properties of Rat Olfactory Bulb Dopamine Neurons.
Front Cell Neurosci. 2020 Mar 20;14:60. doi: 10.3389/fncel.2020.00060. eCollection 2020.
7
Complex neural representation of odour information in the olfactory bulb.
Acta Physiol (Oxf). 2020 Jan;228(1):e13333. doi: 10.1111/apha.13333. Epub 2019 Jul 2.
9
Olfactory Dysfunction in Neurodegenerative Diseases.
Curr Allergy Asthma Rep. 2018 Jun 15;18(8):42. doi: 10.1007/s11882-018-0796-4.

本文引用的文献

1
Muscarinic receptors modulate dendrodendritic inhibitory synapses to sculpt glomerular output.
J Neurosci. 2015 Apr 8;35(14):5680-92. doi: 10.1523/JNEUROSCI.4953-14.2015.
2
Paying attention to smell: cholinergic signaling in the olfactory bulb.
Front Synaptic Neurosci. 2014 Sep 25;6:21. doi: 10.3389/fnsyn.2014.00021. eCollection 2014.
3
Mechanisms underlying early odor preference learning in rats.
Prog Brain Res. 2014;208:115-56. doi: 10.1016/B978-0-444-63350-7.00005-X.
4
Nicotinic receptors modulate olfactory bulb external tufted cells via an excitation-dependent inhibitory mechanism.
J Neurophysiol. 2013 Oct;110(7):1544-53. doi: 10.1152/jn.00865.2012. Epub 2013 Jul 10.
5
A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb.
J Neurosci. 2013 Feb 13;33(7):3037-58. doi: 10.1523/JNEUROSCI.2831-12.2013.
6
α(1A)-Adrenergic regulation of inhibition in the olfactory bulb.
J Physiol. 2013 Apr 1;591(7):1631-43. doi: 10.1113/jphysiol.2012.248591. Epub 2012 Dec 24.
7
A model of cholinergic modulation in olfactory bulb and piriform cortex.
J Neurophysiol. 2013 Mar;109(5):1360-77. doi: 10.1152/jn.00577.2012. Epub 2012 Dec 5.
9
Blocking muscarinic receptors in the olfactory bulb impairs performance on an olfactory short-term memory task.
Front Behav Neurosci. 2012 Sep 6;6:59. doi: 10.3389/fnbeh.2012.00059. eCollection 2012.
10
Noradrenergic and cholinergic modulation of olfactory bulb sensory processing.
Front Behav Neurosci. 2012 Aug 13;6:52. doi: 10.3389/fnbeh.2012.00052. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验