Suppr超能文献

人类和酵母通用转录及DNA修复因子TFIIH的结构

Architecture of the Human and Yeast General Transcription and DNA Repair Factor TFIIH.

作者信息

Luo Jie, Cimermancic Peter, Viswanath Shruthi, Ebmeier Christopher C, Kim Bong, Dehecq Marine, Raman Vishnu, Greenberg Charles H, Pellarin Riccardo, Sali Andrej, Taatjes Dylan J, Hahn Steven, Ranish Jeff

机构信息

Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA.

Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.

出版信息

Mol Cell. 2015 Sep 3;59(5):794-806. doi: 10.1016/j.molcel.2015.07.016.

Abstract

TFIIH is essential for both RNA polymerase II transcription and DNA repair, and mutations in TFIIH can result in human disease. Here, we determine the molecular architecture of human and yeast TFIIH by an integrative approach using chemical crosslinking/mass spectrometry (CXMS) data, biochemical analyses, and previously published electron microscopy maps. We identified four new conserved "topological regions" that function as hubs for TFIIH assembly and more than 35 conserved topological features within TFIIH, illuminating a network of interactions involved in TFIIH assembly and regulation of its activities. We show that one of these conserved regions, the p62/Tfb1 Anchor region, directly interacts with the DNA helicase subunit XPD/Rad3 in native TFIIH and is required for the integrity and function of TFIIH. We also reveal the structural basis for defects in patients with xeroderma pigmentosum and trichothiodystrophy, with mutations found at the interface between the p62 Anchor region and the XPD subunit.

摘要

TFIIH对于RNA聚合酶II转录和DNA修复均至关重要,TFIIH中的突变可导致人类疾病。在此,我们通过整合化学交联/质谱(CXMS)数据、生化分析及先前发表的电子显微镜图谱等方法,确定了人类和酵母TFIIH的分子结构。我们识别出四个新的保守“拓扑区域”,它们作为TFIIH组装的枢纽,以及TFIIH内超过35个保守拓扑特征,阐明了TFIIH组装及其活性调节所涉及的相互作用网络。我们表明,这些保守区域之一,即p62/Tfb1锚定区域,在天然TFIIH中直接与DNA解旋酶亚基XPD/Rad3相互作用,并且是TFIIH完整性和功能所必需的。我们还揭示了着色性干皮病和毛发硫营养不良患者缺陷的结构基础,这些患者的突变位于p62锚定区域与XPD亚基之间的界面处。

相似文献

1
Architecture of the Human and Yeast General Transcription and DNA Repair Factor TFIIH.
Mol Cell. 2015 Sep 3;59(5):794-806. doi: 10.1016/j.molcel.2015.07.016.
2
Function of Conserved Topological Regions within the Saccharomyces cerevisiae Basal Transcription Factor TFIIH.
Mol Cell Biol. 2016 Sep 12;36(19):2464-75. doi: 10.1128/MCB.00182-16. Print 2016 Oct 1.
4
The rem mutations in the ATP-binding groove of the Rad3/XPD helicase lead to Xeroderma pigmentosum-Cockayne syndrome-like phenotypes.
PLoS Genet. 2014 Dec 11;10(12):e1004859. doi: 10.1371/journal.pgen.1004859. eCollection 2014 Dec.
8
Ribosomal protein S3 associates with the TFIIH complex and positively regulates nucleotide excision repair.
Cell Mol Life Sci. 2021 Apr;78(7):3591-3606. doi: 10.1007/s00018-020-03754-x. Epub 2021 Jan 19.

引用本文的文献

1
MoMkt1, a member of XPG/RAD2 nuclease family, regulates development and pathogenicity in .
Virulence. 2025 Dec;16(1):2546068. doi: 10.1080/21505594.2025.2546068. Epub 2025 Aug 25.
2
Imaging-Based High-Content Screening with Clickable Probes Identifies XPB Inhibitors.
Angew Chem Int Ed Engl. 2025 Sep 1;64(36):e202505585. doi: 10.1002/anie.202505585. Epub 2025 Jul 30.
3
Molecular model of TFIIH recruitment to the transcription-coupled repair machinery.
Nat Commun. 2025 Mar 8;16(1):2341. doi: 10.1038/s41467-025-57593-0.
6
Structural insights into the human NuA4/TIP60 acetyltransferase and chromatin remodeling complex.
Science. 2024 Aug 23;385(6711):eadl5816. doi: 10.1126/science.adl5816.
7
Current proteomics methods applicable to dissecting the DNA damage response.
NAR Cancer. 2023 May 19;5(2):zcad020. doi: 10.1093/narcan/zcad020. eCollection 2023 Jun.
9
Transcriptional multiomics reveals the mechanism of seed deterioration in Nicotiana tabacum L. and Oryza sativa L.
J Adv Res. 2022 Dec;42:163-176. doi: 10.1016/j.jare.2022.03.009. Epub 2022 Mar 16.

本文引用的文献

1
The structure of the TFIIH p34 subunit reveals a von Willebrand factor A like fold.
PLoS One. 2014 Jul 11;9(7):e102389. doi: 10.1371/journal.pone.0102389. eCollection 2014.
2
The structure and substrate specificity of human Cdk12/Cyclin K.
Nat Commun. 2014 Mar 24;5:3505. doi: 10.1038/ncomms4505.
4
Structural basis for nuclear import of splicing factors by human Transportin 3.
Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2728-33. doi: 10.1073/pnas.1320755111. Epub 2014 Jan 21.
5
A structure of a collagen VI VWA domain displays N and C termini at opposite sides of the protein.
Structure. 2014 Feb 4;22(2):199-208. doi: 10.1016/j.str.2013.06.028. Epub 2013 Dec 12.
6
Structural insights into transcription initiation by RNA polymerase II.
Trends Biochem Sci. 2013 Dec;38(12):603-11. doi: 10.1016/j.tibs.2013.09.002. Epub 2013 Oct 11.
7
Architecture of an RNA polymerase II transcription pre-initiation complex.
Science. 2013 Nov 8;342(6159):1238724. doi: 10.1126/science.1238724. Epub 2013 Sep 26.
8
Structural visualization of key steps in human transcription initiation.
Nature. 2013 Mar 28;495(7442):481-6. doi: 10.1038/nature11991. Epub 2013 Feb 27.
9
ARCH domain of XPD, an anchoring platform for CAK that conditions TFIIH DNA repair and transcription activities.
Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):E633-42. doi: 10.1073/pnas.1213981110. Epub 2013 Feb 4.
10
Functional insights into the core-TFIIH from a comparative survey.
Genomics. 2013 Mar;101(3):178-86. doi: 10.1016/j.ygeno.2012.11.003. Epub 2012 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验