Furenlid L R, Hesterman J Y, Barrett H H
Department of Radiology, University of Arizona Tucson, AZ 85724 ; College of Optical Sciences, University of Arizona Tucson, AZ 85724.
College of Optical Sciences, University of Arizona Tucson, AZ 85724.
Proc SPIE Int Soc Opt Eng. 2007 Aug 26;6707. doi: 10.1117/12.740321.
Maximum-likelihood estimation methods offer many advantages for processing experimental data to extract information, especially when combined with carefully measured calibration data. There are many tasks relevant to x-ray and gamma-ray detection that can be addressed with a new, fast ML-search algorithm that can be implemented in hardware or software. Example applications include gamma-ray event position, energy, and timing estimation, as well as general applications in optical testing and wave-front sensing.
最大似然估计方法在处理实验数据以提取信息方面具有许多优势,特别是与经过精心测量的校准数据相结合时。有许多与X射线和伽马射线探测相关的任务可以通过一种新的、快速的ML搜索算法来解决,该算法可以在硬件或软件中实现。示例应用包括伽马射线事件位置、能量和时间估计,以及光学测试和波前传感中的一般应用。