Russell B C, Croudace Ian W, Warwick Phil E
GAU-Radioanalytical, Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, UK; National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK.
GAU-Radioanalytical, Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, UK.
Anal Chim Acta. 2015 Aug 26;890:7-20. doi: 10.1016/j.aca.2015.06.037. Epub 2015 Aug 8.
Radionuclides of caesium are environmentally important since they are formed as significant high yield fission products ((135)Cs and (137)Cs) and activation products ((134)Cs and (136)Cs) during nuclear fission. They originate from a range of nuclear activities such as weapons testing, nuclear reprocessing and nuclear fuel cycle discharges and nuclear accidents. Whilst (137)Cs, (134)Cs and (136)Cs are routinely measurable at high sensitivity by gamma spectrometry, routine detection of long-lived (135)Cs by radiometric methods is challenging. This measurement is, however, important given its significance in long-term nuclear waste storage and disposal. Furthermore, the (135)Cs/(137)Cs ratio varies with reactor, weapon and fuel type, and accurate measurement of this ratio can therefore be used as a forensic tool in identifying the source(s) of nuclear contamination. The shorter-lived activation products (134)Cs and (136)Cs have a limited application but provide useful early information on fuel irradiation history and have importance in health physics. Detection of (135)Cs (and (137)Cs) is achievable by mass spectrometric techniques; most commonly inductively coupled plasma mass spectrometry (ICP-MS), as well as thermal ionisation (TIMS), accelerator (AMS) and resonance ionisation (RIMS) techniques. The critical issues affecting the accuracy and detection limits achievable by this technique are effective removal of barium to eliminate isobaric interferences arising from (135)Ba and (137)Ba, and elimination of peak tailing of stable (133)Cs on (135)Cs. Isobaric interferences can be removed by chemical separation, most commonly ion exchange chromatography, and/or instrumental separation using an ICP-MS equipped with a reaction cell. The removal of the peak tailing interference is dependent on the instrument used for final measurement. This review summarizes and compares the analytical procedures developed for determination of (135)Cs/(137)Cs, with particular focus on ICP-MS detection and the methods applied to interference separation.
铯的放射性核素在环境方面具有重要意义,因为它们是在核裂变过程中作为大量高产量裂变产物((135)Cs和(137)Cs)以及活化产物((134)Cs和(136)Cs)形成的。它们源自一系列核活动,如武器试验、核后处理、核燃料循环排放以及核事故。虽然(137)Cs、(134)Cs和(136)Cs通常可通过伽马能谱法以高灵敏度进行测量,但通过辐射测量方法对长寿命的(135)Cs进行常规检测具有挑战性。然而,鉴于其在长期核废料储存和处置中的重要性,这种测量是很重要的。此外,(135)Cs/(137)Cs的比值会因反应堆、武器和燃料类型而有所不同,因此准确测量该比值可作为识别核污染来源的法医工具。寿命较短的活化产物(134)Cs和(136)Cs应用有限,但能提供有关燃料辐照历史的有用早期信息,并且在健康物理学中具有重要意义。通过质谱技术可以检测到(135)Cs(和(137)Cs);最常用的是电感耦合等离子体质谱法(ICP-MS),以及热电离(TIMS)、加速器(AMS)和共振电离(RIMS)技术。影响该技术可实现的准确度和检测限的关键问题是有效去除钡,以消除由(135)Ba和(137)Ba产生的同量异位素干扰,以及消除稳定的(133)Cs在(135)Cs上的峰拖尾。同量异位素干扰可通过化学分离(最常见的是离子交换色谱法)和/或使用配备反应池的ICP-MS进行仪器分离来去除。峰拖尾干扰的去除取决于用于最终测量的仪器。本综述总结并比较了为测定(135)Cs/(137)Cs而开发的分析程序,特别关注ICP-MS检测以及应用于干扰分离的方法。