Suppr超能文献

用于控制多功能肌电假手的新型姿势控制算法。

Novel postural control algorithm for control of multifunctional myoelectric prosthetic hands.

作者信息

Segil Jacob L, Weir Richard F

机构信息

Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO;

出版信息

J Rehabil Res Dev. 2015;52(4):449-66. doi: 10.1682/JRRD.2014.05.0134.

Abstract

The myoelectric controller (MEC) remains a technological bottleneck in the development of multifunctional prosthetic hands. Current MECs require physiologically inappropriate commands to indicate intent and lack effectiveness in a clinical setting. Postural control schemes use surface electromyography signals to drive a cursor in a continuous two-dimensional domain that is then transformed into a hand posture. Here, we present a novel algorithm for a postural controller and test the efficacy of the system during two experiments with 11 total subjects. In the first experiment, we found that performance increased when a velocity cursor-control technique versus a position cursor-control technique was used. Also, performance did not change when using 3, 4, or 12 surface electrodes. In the second experiment, subjects commanded a six degree-of-freedom virtual hand into seven functional postures without training, with completion rates of 82 +/- 4%, movement times of 3.5 +/- 0.2 s, and path efficiencies of 45 +/- 3%. Subjects retained the ability to use the postural controller at a high level across days after a single 1 hr training session. Our results substantiate the novel algorithm for a postural controller as a robust and advantageous design for a MEC of multifunction prosthetic hands.

摘要

肌电控制器(MEC)仍然是多功能假手发展中的一个技术瓶颈。当前的肌电控制器需要生理上不适当的指令来表明意图,并且在临床环境中缺乏有效性。姿势控制方案使用表面肌电信号在连续的二维域中驱动光标,然后将其转换为手部姿势。在此,我们提出了一种用于姿势控制器的新算法,并在涉及11名受试者的两项实验中测试了该系统的功效。在第一个实验中,我们发现使用速度光标控制技术相对于位置光标控制技术时,性能有所提高。此外,使用3个、4个或12个表面电极时,性能没有变化。在第二个实验中,受试者在未经训练的情况下将一个六自由度虚拟手控制到七种功能姿势,完成率为82±4%,移动时间为3.5±0.2秒,路径效率为45±3%。在单次1小时的训练课程后,受试者在数天内仍能高水平地使用姿势控制器。我们的结果证实了用于姿势控制器的新算法是多功能假手肌电控制器的一种稳健且有利的设计。

相似文献

1
Novel postural control algorithm for control of multifunctional myoelectric prosthetic hands.
J Rehabil Res Dev. 2015;52(4):449-66. doi: 10.1682/JRRD.2014.05.0134.
2
Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
J Rehabil Res Dev. 2014;51(9):1439-54. doi: 10.1682/JRRD.2014.01.0014.
4
Functional Assessment of a Myoelectric Postural Controller and Multi-Functional Prosthetic Hand by Persons With Trans-Radial Limb Loss.
IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):618-627. doi: 10.1109/TNSRE.2016.2586846. Epub 2016 Jun 30.
5
Design and validation of a morphing myoelectric hand posture controller based on principal component analysis of human grasping.
IEEE Trans Neural Syst Rehabil Eng. 2014 Mar;22(2):249-57. doi: 10.1109/TNSRE.2013.2260172.
6
A method for the control of multigrasp myoelectric prosthetic hands.
IEEE Trans Neural Syst Rehabil Eng. 2012 Jan;20(1):58-67. doi: 10.1109/TNSRE.2011.2175488. Epub 2011 Dec 12.
7
A synergy-driven approach to a myoelectric hand.
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650377. doi: 10.1109/ICORR.2013.6650377.
9
Electromyogram synergy control of a dexterous artificial hand to unscrew and screw objects.
J Neuroeng Rehabil. 2014 Mar 21;11:41. doi: 10.1186/1743-0003-11-41.
10
Intelligent multifunction myoelectric control of hand prostheses.
J Med Eng Technol. 2002 Jul-Aug;26(4):139-46. doi: 10.1080/03091900210142459.

引用本文的文献

1
Autoencoder-based myoelectric controller for prosthetic hands.
Front Bioeng Biotechnol. 2023 Jun 26;11:1134135. doi: 10.3389/fbioe.2023.1134135. eCollection 2023.
2
Learning to operate a high-dimensional hand via a low-dimensional controller.
Front Bioeng Biotechnol. 2023 May 4;11:1139405. doi: 10.3389/fbioe.2023.1139405. eCollection 2023.
3
Recalibration of myoelectric control with active learning.
Front Neurorobot. 2022 Dec 15;16:1061201. doi: 10.3389/fnbot.2022.1061201. eCollection 2022.
4
Comparison of Myoelectric Control Schemes for Simultaneous Hand and Wrist Movement using Chronically Implanted Electromyography: A Case Series.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:6224-6230. doi: 10.1109/EMBC46164.2021.9630845.
6
A Myoelectric Postural Control Algorithm for Persons With Transradial Amputations: A Consideration of Clinical Readiness.
IEEE Robot Autom Mag. 2020 Mar;27(1):77-86. doi: 10.1109/mra.2019.2949688. Epub 2019 Nov 20.
7
Linear and Non-linear Dimensionality-Reduction Techniques on Full Hand Kinematics.
Front Bioeng Biotechnol. 2020 May 5;8:429. doi: 10.3389/fbioe.2020.00429. eCollection 2020.
8
Functional Assessment of a Myoelectric Postural Controller and Multi-Functional Prosthetic Hand by Persons With Trans-Radial Limb Loss.
IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):618-627. doi: 10.1109/TNSRE.2016.2586846. Epub 2016 Jun 30.

本文引用的文献

1
First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand.
J Neurosci Methods. 2015 Apr 15;244:85-93. doi: 10.1016/j.jneumeth.2014.07.016. Epub 2014 Aug 4.
2
Dexterous control of a prosthetic hand using fine-wire intramuscular electrodes in targeted extrinsic muscles.
IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):828-36. doi: 10.1109/TNSRE.2014.2301234. Epub 2014 Jan 21.
3
Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review.
J Rehabil Res Dev. 2013;50(5):599-618. doi: 10.1682/jrrd.2011.10.0188.
4
Intuitive, online, simultaneous, and proportional myoelectric control over two degrees-of-freedom in upper limb amputees.
IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):501-10. doi: 10.1109/TNSRE.2013.2278411. Epub 2013 Aug 26.
5
Abstract and proportional myoelectric control for multi-fingered hand prostheses.
Ann Biomed Eng. 2013 Dec;41(12):2687-98. doi: 10.1007/s10439-013-0876-5. Epub 2013 Aug 9.
6
Design and validation of a morphing myoelectric hand posture controller based on principal component analysis of human grasping.
IEEE Trans Neural Syst Rehabil Eng. 2014 Mar;22(2):249-57. doi: 10.1109/TNSRE.2013.2260172.
7
Preliminary functional assessment of a multigrasp myoelectric prosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4172-5. doi: 10.1109/EMBC.2012.6346886.
8
Classification of simultaneous movements using surface EMG pattern recognition.
IEEE Trans Biomed Eng. 2013 May;60(5):1250-8. doi: 10.1109/TBME.2012.2232293. Epub 2012 Dec 10.
10
Muscle coordination is habitual rather than optimal.
J Neurosci. 2012 May 23;32(21):7384-91. doi: 10.1523/JNEUROSCI.5792-11.2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验