Suppr超能文献

以石墨烯为原料的NiCo2O4纳米棒和纳米束的混合物作为超级电容器的电极材料前景广阔。

Hybrids of NiCo2O4 nanorods and nanobundles with graphene as promising electrode materials for supercapacitors.

作者信息

Wang Zhuo, Zhang Xin, Zhang Zhongshen, Qiao Nanli, Li Yang, Hao Zhengping

机构信息

Department of Environmental Nano-Materials, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry, Tsinghua University, Beijing 100084, China.

Department of Environmental Nano-Materials, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

出版信息

J Colloid Interface Sci. 2015 Dec 15;460:303-9. doi: 10.1016/j.jcis.2015.08.067. Epub 2015 Aug 29.

Abstract

High dispersion of NiCo2O4 nanorods and porous NiCo2O4 nanobundles decorated on RGO have been synthesized by a facile hydrothermal method, followed by calcination in one step. By adjusting the starting metal sources to realize the synthesis of different morphologies of NiCo2O4. The morphology and the microstructure of the as-prepared composites were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and transmission electron microscope (TEM) techniques. Among them, the porous RGO/NiCo2O4 nanobundles gives a higher specific capacitance of 1278F/g at 1A/g and 719F/g at 20A/g, showing a remarkable rate capability. The excellent electrochemical performances could ascribed to the unique structural feature with higher surface area. It could be anticipated that the synthesized electrode material will gain promising applications in supercapacitors and other devices because of their outstanding characteristics of controllable capacitance and facilely synthesized.

摘要

通过一种简便的水热法,随后一步煅烧,合成了负载在还原氧化石墨烯(RGO)上的具有高分散性的NiCo2O4纳米棒和多孔NiCo2O4纳米束。通过调整起始金属源来实现不同形貌的NiCo2O4的合成。采用X射线衍射(XRD)、布鲁诺尔-埃米特-特勒(BET)和透射电子显微镜(TEM)技术对所制备复合材料的形貌和微观结构进行了表征。其中,多孔RGO/NiCo2O4纳米束在1A/g时具有1278F/g的较高比电容,在20A/g时为719F/g,显示出显著的倍率性能。优异的电化学性能归因于具有较高表面积的独特结构特征。可以预期,所合成的电极材料因其可控电容和易于合成的突出特性,将在超级电容器和其他器件中获得有前景的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验