Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London, SW7 2BW, UK.
Small. 2015 Nov 4;11(41):5472-82. doi: 10.1002/smll.201501350. Epub 2015 Sep 9.
In the last decade, metal oxides have emerged as a fascinating class of electronic material, exhibiting a wide range of unique and technologically relevant characteristics. For example, thin-film transistors formed from amorphous or polycrystalline metal oxide semiconductors offer the promise of low-cost, large-area, and flexible electronics, exhibiting performances comparable to or in excess of incumbent silicon-based technologies. Atomically flat interfaces between otherwise insulating or semiconducting complex oxides, are also found to be highly conducting, displaying 2-dimensional (2D) charge transport properties, strong correlations, and even superconductivity. Field-effect devices employing such carefully engineered interfaces are hoped to one day compete with traditional group IV or III-V semiconductors for use in the next-generation of high-performance electronics. In this Concept article we provide an overview of the different metal oxide transistor technologies and potential future research directions. In particular, we look at the recent reports of multilayer oxide thin-film transistors and the possibility of 2D electron transport in these disordered/polycrystalline systems and discuss the potential of the technology for applications in large-area electronics.
在过去的十年中,金属氧化物作为一类引人入胜的电子材料出现了,它们表现出广泛的独特和与技术相关的特性。例如,由非晶态或多晶金属氧化物半导体形成的薄膜晶体管有望提供低成本、大面积和柔性电子学,其性能可与现有的硅基技术媲美或超过。在原本绝缘或半导体的复杂氧化物之间,原子级平坦的界面也被发现具有高导电性,表现出二维(2D)电荷输运特性、强相关性,甚至超导性。希望采用这种精心设计的界面的场效应器件有朝一日能够与传统的 IV 族或 III-V 族半导体竞争,用于下一代高性能电子学。在这篇概念文章中,我们提供了不同金属氧化物晶体管技术的概述和未来潜在的研究方向。特别是,我们研究了最近关于多层氧化物薄膜晶体管的报道,以及在这些无序/多晶系统中实现二维电子输运的可能性,并讨论了该技术在大面积电子学中的应用潜力。