Suppr超能文献

酿酒酵母的静止期细胞显示出延长时序寿命过程所需的动态肌动蛋白丝。

The Stationary-Phase Cells of Saccharomyces cerevisiae Display Dynamic Actin Filaments Required for Processes Extending Chronological Life Span.

作者信息

Vasicova Pavla, Lejskova Renata, Malcova Ivana, Hasek Jiri

机构信息

Laboratory of Cell Reproduction, Institute of Microbiology of ASCR, Prague, Czech Republic

Laboratory of Cell Reproduction, Institute of Microbiology of ASCR, Prague, Czech Republic.

出版信息

Mol Cell Biol. 2015 Nov;35(22):3892-908. doi: 10.1128/MCB.00811-15. Epub 2015 Sep 8.

Abstract

Stationary-growth-phase Saccharomyces cerevisiae yeast cultures consist of nondividing cells that undergo chronological aging. For their successful survival, the turnover of proteins and organelles, ensured by autophagy and the activation of mitochondria, is performed. Some of these processes are engaged in by the actin cytoskeleton. In S. cerevisiae stationary-phase cells, F actin has been shown to form static aggregates named actin bodies, subsequently cited to be markers of quiescence. Our in vivo analyses revealed that stationary-phase cultures contain cells with dynamic actin filaments, besides the cells with static actin bodies. The cells with dynamic actin displayed active endocytosis and autophagy and well-developed mitochondrial networks. Even more, stationary-phase cell cultures grown under calorie restriction predominantly contained cells with actin cables, confirming that the presence of actin cables is linked to successful adaptation to stationary phase. Cells with actin bodies were inactive in endocytosis and autophagy and displayed aberrations in mitochondrial networks. Notably, cells of the respiratory activity-deficient cox4Δ strain displayed the same mitochondrial aberrations and actin bodies only. Additionally, our results indicate that mitochondrial dysfunction precedes the formation of actin bodies and the appearance of actin bodies corresponds to decreased cell fitness. We conclude that the F-actin status reflects the extent of damage that arises from exponential growth.

摘要

稳定生长期的酿酒酵母培养物由经历时序性衰老的非分裂细胞组成。为了成功存活,细胞会通过自噬和线粒体激活来进行蛋白质和细胞器的更新。肌动蛋白细胞骨架参与了其中一些过程。在酿酒酵母稳定期细胞中,F肌动蛋白已被证明会形成名为肌动蛋白体的静态聚集体,随后被认为是静止状态的标志物。我们的体内分析表明,除了具有静态肌动蛋白体的细胞外,稳定期培养物中还含有具有动态肌动蛋白丝的细胞。具有动态肌动蛋白的细胞表现出活跃的内吞作用和自噬,以及发育良好的线粒体网络。更重要的是,在卡路里限制条件下生长的稳定期细胞培养物主要含有具有肌动蛋白索的细胞,这证实了肌动蛋白索的存在与成功适应稳定期有关。具有肌动蛋白体的细胞在内吞作用和自噬方面不活跃,并且线粒体网络出现异常。值得注意的是,呼吸活性缺陷的cox4Δ菌株的细胞仅表现出相同的线粒体异常和肌动蛋白体。此外,我们的结果表明线粒体功能障碍先于肌动蛋白体的形成,并且肌动蛋白体的出现对应于细胞适应性的降低。我们得出结论,F-肌动蛋白状态反映了指数生长过程中产生的损伤程度。

相似文献

2
Actin bodies in yeast quiescent cells: an immediately available actin reserve?
Mol Biol Cell. 2006 Nov;17(11):4645-55. doi: 10.1091/mbc.e06-04-0282. Epub 2006 Aug 16.
3
Role of formins in actin assembly: nucleation and barbed-end association.
Science. 2002 Jul 26;297(5581):612-5. doi: 10.1126/science.1072309. Epub 2002 Jun 6.
4
Ultrastructural disorder of actin mutant suggests uncoupling of actin-dependent pathway from microtubule-dependent pathway in budding yeast.
J Electron Microsc (Tokyo). 2011 Dec;60(6):379-91. doi: 10.1093/jmicro/dfr073. Epub 2011 Oct 15.
5
Live cell imaging of mitochondrial movement along actin cables in budding yeast.
Curr Biol. 2004 Nov 23;14(22):1996-2004. doi: 10.1016/j.cub.2004.11.004.
6
Mitochondrial inheritance: cell cycle and actin cable dependence of polarized mitochondrial movements in Saccharomyces cerevisiae.
Cell Motil Cytoskeleton. 1997;37(3):199-210. doi: 10.1002/(SICI)1097-0169(1997)37:3<199::AID-CM2>3.0.CO;2-2.
7
Polarized growth in the absence of F-actin in Saccharomyces cerevisiae exiting quiescence.
PLoS One. 2008 Jul 2;3(7):e2556. doi: 10.1371/journal.pone.0002556.
8
Proteome adaptation of Saccharomyces cerevisiae to severe calorie restriction in Retentostat cultures.
J Proteome Res. 2014 Aug 1;13(8):3542-53. doi: 10.1021/pr5003388. Epub 2014 Jul 18.
10
Dynamic organization of the actin cytoskeleton during meiosis and spore formation in budding yeast.
Traffic. 2006 Dec;7(12):1628-42. doi: 10.1111/j.1600-0854.2006.00496.x.

引用本文的文献

1
A Systematic Review on Quiescent State Research Approaches in .
Cells. 2023 Jun 12;12(12):1608. doi: 10.3390/cells12121608.
2
Effects of heterologous human tau protein expression in yeast models of proteotoxic stress response.
CNS Neurosci Ther. 2024 Jun;30(6):e14304. doi: 10.1111/cns.14304. Epub 2023 Jun 21.
5
Cell organelles and yeast longevity: an intertwined regulation.
Curr Genet. 2020 Feb;66(1):15-41. doi: 10.1007/s00294-019-01035-0. Epub 2019 Sep 18.
6
Effect of Ethanol-Derived Clove Leaf Extract on the Oxidative Stress Response in Yeast .
Int J Microbiol. 2019 Aug 14;2019:2145378. doi: 10.1155/2019/2145378. eCollection 2019.
8
Non-genetic impact factors on chronological lifespan and stress resistance of baker's yeast.
Microb Cell. 2016 Apr 12;3(6):232-235. doi: 10.15698/mic2016.06.504.
9
Formaldehyde fixation is detrimental to actin cables in glucose-depleted cells.
Microb Cell. 2016 Apr 12;3(5):206-214. doi: 10.15698/mic2016.05.499.

本文引用的文献

1
Rapid glucose depletion immobilizes active myosin V on stabilized actin cables.
Curr Biol. 2014 Oct 20;24(20):2471-9. doi: 10.1016/j.cub.2014.09.017. Epub 2014 Oct 9.
2
Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification.
PLoS Genet. 2014 May 1;10(5):e1004347. doi: 10.1371/journal.pgen.1004347. eCollection 2014 May.
3
Glucose starvation inhibits autophagy via vacuolar hydrolysis and induces plasma membrane internalization by down-regulating recycling.
J Biol Chem. 2014 Jun 13;289(24):16736-47. doi: 10.1074/jbc.M113.525782. Epub 2014 Apr 21.
4
Actin dynamics affect mitochondrial quality control and aging in budding yeast.
Curr Biol. 2013 Dec 2;23(23):2417-22. doi: 10.1016/j.cub.2013.10.022. Epub 2013 Nov 21.
5
Actin - a biosensor that determines cell fate in yeasts.
FEMS Yeast Res. 2014 Feb;14(1):89-95. doi: 10.1111/1567-1364.12119. Epub 2013 Nov 26.
6
Key events during the transition from rapid growth to quiescence in budding yeast require posttranscriptional regulators.
Mol Biol Cell. 2013 Dec;24(23):3697-709. doi: 10.1091/mbc.E13-05-0241. Epub 2013 Oct 2.
7
Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast.
Exp Gerontol. 2013 Oct;48(10):1107-19. doi: 10.1016/j.exger.2013.01.006. Epub 2013 Jan 18.
8
Ultrastructural dynamics of proteins involved in endocytic budding.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):E2587-94. doi: 10.1073/pnas.1202789109. Epub 2012 Sep 4.
10
Chronological aging in Saccharomyces cerevisiae.
Subcell Biochem. 2012;57:101-21. doi: 10.1007/978-94-007-2561-4_5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验