Rutowicz Kinga, Puzio Marcin, Halibart-Puzio Joanna, Lirski Maciej, Kotliński Maciej, Kroteń Magdalena A, Knizewski Lukasz, Lange Bartosz, Muszewska Anna, Śniegowska-Świerk Katarzyna, Kościelniak Janusz, Iwanicka-Nowicka Roksana, Buza Krisztián, Janowiak Franciszek, Żmuda Katarzyna, Jõesaar Indrek, Laskowska-Kaszub Katarzyna, Fogtman Anna, Kollist Hannes, Zielenkiewicz Piotr, Tiuryn Jerzy, Siedlecki Paweł, Swiezewski Szymon, Ginalski Krzysztof, Koblowska Marta, Archacki Rafał, Wilczynski Bartek, Rapacz Marcin, Jerzmanowski Andrzej
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (K.R., J.H.-P., M.L., M.Kot., A.M., R.I.-N., A.F., P.Z., P.S., S.S., M.Kob., A.J.);Laboratory of Systems Biology, University of Warsaw, 02-106 Warsaw, Poland (M.P., M.Kot., B.L., R.I.-N., K.L.-K., P.S., M.Kob., R.A., A.J.);Institute of Plant Physiology, University of Rzeszów, 36-100 Kolbuszowa, Poland (J.H.-P.);College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-089 Warsaw, Poland (M.A.K.);Laboratory of Bioinformatics and Systems Biology, Center of New Technologies (L.K., A.M., K.G.), and Institute of Informatics (K.B., J.T., B.W.), University of Warsaw, 02-097 Warsaw, Poland;Department of Plant Physiology, University of Agriculture in Cracow, 30-239 Cracow, Poland (K.Ś.-Ś., J.K., K.Ż., M.R.);Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Cracow, Poland (F.J.); andInstitute of Technology, University of Tartu, 50411 Tartu, Tartumaa, Estonia (I.J., H.K.).
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (K.R., J.H.-P., M.L., M.Kot., A.M., R.I.-N., A.F., P.Z., P.S., S.S., M.Kob., A.J.);Laboratory of Systems Biology, University of Warsaw, 02-106 Warsaw, Poland (M.P., M.Kot., B.L., R.I.-N., K.L.-K., P.S., M.Kob., R.A., A.J.);Institute of Plant Physiology, University of Rzeszów, 36-100 Kolbuszowa, Poland (J.H.-P.);College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-089 Warsaw, Poland (M.A.K.);Laboratory of Bioinformatics and Systems Biology, Center of New Technologies (L.K., A.M., K.G.), and Institute of Informatics (K.B., J.T., B.W.), University of Warsaw, 02-097 Warsaw, Poland;Department of Plant Physiology, University of Agriculture in Cracow, 30-239 Cracow, Poland (K.Ś.-Ś., J.K., K.Ż., M.R.);Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Cracow, Poland (F.J.); andInstitute of Technology, University of Tartu, 50411 Tartu, Tartumaa, Estonia (I.J., H.K.)
Plant Physiol. 2015 Nov;169(3):2080-101. doi: 10.1104/pp.15.00493. Epub 2015 Sep 8.
Linker (H1) histones play critical roles in chromatin compaction in higher eukaryotes. They are also the most variable of the histones, with numerous nonallelic variants cooccurring in the same cell. Plants contain a distinct subclass of minor H1 variants that are induced by drought and abscisic acid and have been implicated in mediating adaptive responses to stress. However, how these variants facilitate adaptation remains poorly understood. Here, we show that the single Arabidopsis (Arabidopsis thaliana) stress-inducible variant H1.3 occurs in plants in two separate and most likely autonomous pools: a constitutive guard cell-specific pool and a facultative environmentally controlled pool localized in other tissues. Physiological and transcriptomic analyses of h1.3 null mutants demonstrate that H1.3 is required for both proper stomatal functioning under normal growth conditions and adaptive developmental responses to combined light and water deficiency. Using fluorescence recovery after photobleaching analysis, we show that H1.3 has superfast chromatin dynamics, and in contrast to the main Arabidopsis H1 variants H1.1 and H1.2, it has no stable bound fraction. The results of global occupancy studies demonstrate that, while H1.3 has the same overall binding properties as the main H1 variants, including predominant heterochromatin localization, it differs from them in its preferences for chromatin regions with epigenetic signatures of active and repressed transcription. We also show that H1.3 is required for a substantial part of DNA methylation associated with environmental stress, suggesting that the likely mechanism underlying H1.3 function may be the facilitation of chromatin accessibility by direct competition with the main H1 variants.
连接组蛋白(H1)在高等真核生物的染色质压缩中起关键作用。它们也是组蛋白中变化最大的,在同一细胞中同时存在许多非等位变体。植物含有一类独特的小H1变体亚类,它们由干旱和脱落酸诱导产生,并参与介导对胁迫的适应性反应。然而,这些变体如何促进适应性仍知之甚少。在这里,我们表明,拟南芥中单一的应激诱导变体H1.3在植物中以两个独立且很可能自主的库存在:一个组成型保卫细胞特异性库和一个位于其他组织中的兼性环境控制库。对h1.3缺失突变体的生理和转录组分析表明,H1.3对于正常生长条件下气孔的正常功能以及对光照和水分缺乏组合的适应性发育反应都是必需的。通过光漂白后荧光恢复分析,我们表明H1.3具有超快的染色质动力学,并且与拟南芥主要的H1变体H1.1和H1.2不同,它没有稳定的结合部分。全局占有率研究结果表明,虽然H1.3具有与主要H1变体相同的总体结合特性,包括主要定位于异染色质,但它在对具有活跃和抑制转录表观遗传特征的染色质区域的偏好上与它们不同。我们还表明,H1.3是与环境胁迫相关的大部分DNA甲基化所必需的,这表明H1.3功能的潜在机制可能是通过与主要H1变体直接竞争来促进染色质的可及性。