IEEE Trans Pattern Anal Mach Intell. 2015 Feb;37(2):212-29. doi: 10.1109/TPAMI.2013.217.
Discrete random probability measures and the exchangeable random partitions they induce are key tools for addressing a variety of estimation and prediction problems in Bayesian inference. Here we focus on the family of Gibbs-type priors, a recent elegant generalization of the Dirichlet and the Pitman-Yor process priors. These random probability measures share properties that are appealing both from a theoretical and an applied point of view: (i) they admit an intuitive predictive characterization justifying their use in terms of a precise assumption on the learning mechanism; (ii) they stand out in terms of mathematical tractability; (iii) they include several interesting special cases besides the Dirichlet and the Pitman-Yor processes. The goal of our paper is to provide a systematic and unified treatment of Gibbs-type priors and highlight their implications for Bayesian nonparametric inference. We deal with their distributional properties, the resulting estimators, frequentist asymptotic validation and the construction of time-dependent versions. Applications, mainly concerning mixture models and species sampling, serve to convey the main ideas. The intuition inherent to this class of priors and the neat results they lead to make one wonder whether it actually represents the most natural generalization of the Dirichlet process.
离散随机概率测度及其诱导的可交换随机划分是解决贝叶斯推断中各种估计和预测问题的关键工具。在这里,我们专注于 Gibbs 型先验的家族,这是 Dirichlet 和 Pitman-Yor 过程先验的一个最近的优雅推广。这些随机概率测度具有从理论和应用角度来看都很吸引人的属性:(i) 它们具有直观的预测特征,根据对学习机制的精确假设,可以合理地使用它们;(ii) 它们在数学上易于处理;(iii) 除了 Dirichlet 和 Pitman-Yor 过程之外,它们还包括几个有趣的特例。我们论文的目标是为 Gibbs 型先验提供一个系统而统一的处理,并强调它们对贝叶斯非参数推断的影响。我们处理它们的分布属性、由此产生的估计量、频率主义渐近验证以及时变版本的构建。应用主要涉及混合模型和物种抽样,用于传达主要思想。这一类先验所固有的直觉和它们所带来的整洁结果让人不禁怀疑它们是否真的代表了 Dirichlet 过程的最自然推广。