Cacioppo Stephanie, Cacioppo John T
High-Performance Electrical Neuroimaging Laboratory, Biological Science Division, University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA.
Center for Cognitive and Social Neuroscience, University of Chicago, Chicago, IL 60637, USA.
J Neurosci Methods. 2015 Dec 30;256:184-97. doi: 10.1016/j.jneumeth.2015.09.004. Epub 2015 Sep 10.
Our recently published analytic toolbox (Cacioppo et al., 2014), running under MATLAB environment and Brainstorm, offered a theoretical framework and set of validation studies for the automatic detection of event-related changes in the global pattern and global field power of electrical brain activity. Here, we provide a step-by-step tutorial of this toolbox along with a detailed description of analytical plans (aka the Chicago Electrical Neuroimaging Analytics, CENA) for the statistical analysis of brain microstate configuration and global field power in within and between-subject designs. Available CENA functions include: (1) a difference wave function; (2) a high-performance microsegmentation suite (HPMS), which consists of three specific analytic tools: (i) a root mean square error (RMSE) metric for identifying stable states and transition states across discrete event-related brain microstates; (ii) a similarity metric based on cosine distance in n dimensional sensor space to determine whether template maps for successive brain microstates differ in configuration of brain activity, and (iii) global field power (GFP) metrics for identifying changes in the overall level of activation of the brain; (3) a bootstrapping function for assessing the extent to which the solutions identified in the HPMS are robust (reliable, generalizable) and for empirically deriving additional experimental hypotheses; and (4) step-by-step procedures for performing a priori contrasts for data analysis. CENA is freely available for brain data spatiotemporal analyses at https://hpenlaboratory.uchicago.edu/page/cena, with sample data, user tutorial videos, and documentation.
我们最近发表的分析工具箱(卡乔波等人,2014年),在MATLAB环境和Brainstorm下运行,为自动检测脑电活动的全局模式和全局场功率中与事件相关的变化提供了一个理论框架和一系列验证研究。在这里,我们提供了这个工具箱的分步教程,以及用于在个体内和个体间设计中对脑微状态配置和全局场功率进行统计分析的分析计划(即芝加哥脑电神经成像分析,CENA)的详细描述。可用的CENA功能包括:(1)一个差值波函数;(2)一个高性能微分割套件(HPMS),它由三个特定的分析工具组成:(i)一个均方根误差(RMSE)度量,用于识别离散的与事件相关的脑微状态中的稳定状态和过渡状态;(ii)一个基于n维传感器空间中余弦距离的相似性度量,以确定连续脑微状态的模板图在脑活动配置上是否不同,以及(iii)用于识别大脑激活总体水平变化 的全局场功率(GFP)度量;(3)一个自举函数,用于评估HPMS中确定的解决方案的稳健程度(可靠、可推广),并凭经验得出额外的实验假设;以及(4)用于执行数据分析的先验对比的分步程序。CENA可在https://hpenlaboratory.uchicago.edu/page/cena上免费用于脑数据的时空分析,同时还提供示例数据、用户教程视频和文档。