Suppr超能文献

Uniform asymptotics of paraxial boundary diffraction waves.

作者信息

Borghi Riccardo

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2015 Apr 1;32(4):685-96. doi: 10.1364/JOSAA.32.000685.

Abstract

Starting from the paraxial formulation of the boundary-diffracted-wave theory proposed by Hannay [J. Mod. Opt. 47, 121-124 (2000)] and exploiting its intrinsic geometrical character, we rediscover some classical results of Fresnel diffraction theory, valid for "large" hard-edge apertures, within a somewhat unorthodox perspective. In this way, a geometrical interpretation of the Schwarzchild uniform asymptotics of the paraxially diffracted wavefield by circular apertures [K. Schwarzschild, Sitzb. München Akad. Wiss. Math.-Phys. Kl. 28, 271-294 (1898)] is given and later generalized to deal with arbitrarily shaped apertures with smooth boundaries. A quantitative exploration is then carried out, with the language of catastrophe optics, about the diffraction patterns produced within the geometrical shadow by opaque elliptic disks under plane wave illumination. In particular, the role of the ellipse's evolute as a geometrical caustic of the diffraction pattern is emphasized through an intuitive interpretation of the underlying saddle coalescing mechanism, obtained by suitably visualizing the saddle topology changes induced by letting the observation point move along the ellipse's major axis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验